lightning/tests/tests_pytorch/utilities/test_auto_restart.py

134 lines
5.4 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import pytest
from torch.utils.data.dataloader import DataLoader
from lightning.fabric.utilities.seed import seed_everything
from lightning.pytorch import Callback, Trainer
from lightning.pytorch.callbacks import OnExceptionCheckpoint
from lightning.pytorch.demos.boring_classes import BoringModel, RandomDataset
from lightning.pytorch.utilities.exceptions import SIGTERMException
from tests_pytorch.helpers.runif import RunIf
class TestAutoRestartModelUnderSignal(BoringModel):
def __init__(self, should_signal: bool, failure_on_step: bool, failure_on_training: bool, on_last_batch: bool):
super().__init__()
self.should_signal = should_signal
self.failure_on_step = failure_on_step
self.failure_on_training = failure_on_training
self.on_last_batch = on_last_batch
self.seen_train_batches = []
def _signal(self):
if self.should_signal:
# simulate `os.kill(os.getpid(), signal.SIGTERM)`
self.trainer._signal_connector.received_sigterm = True
def training_step(self, batch, batch_idx):
self.seen_train_batches.append(batch)
should_signal = self.trainer.fit_loop.epoch_loop._is_training_done if self.on_last_batch else batch_idx == 2
if self.failure_on_step and self.failure_on_training and should_signal:
self._signal()
return super().training_step(batch, batch_idx)
def validation_step(self, batch, batch_idx):
should_signal = (
self.trainer.fit_loop.epoch_loop.val_loop.batch_progress.is_last_batch
if self.on_last_batch
else batch_idx == 2
)
if self.failure_on_step and not self.failure_on_training and should_signal:
self._signal()
return super().validation_step(batch, batch_idx)
def on_train_epoch_end(self):
if not self.failure_on_step and self.failure_on_training:
self._signal()
def on_validation_epoch_end(self):
if not self.failure_on_step and not self.failure_on_training:
self._signal()
def train_dataloader(self):
return DataLoader(RandomDataset(32, 4))
def val_dataloader(self):
return DataLoader(RandomDataset(32, 4))
def _fit_model(
tmpdir, should_signal, val_check_interval, failure_on_step, failure_on_training, on_last_batch, status=None
):
seed_everything(42)
model = TestAutoRestartModelUnderSignal(should_signal, failure_on_step, failure_on_training, on_last_batch)
class MyTestCallback(Callback):
raising_function = None
def on_exception(self, trainer, pl_module, exception):
if isinstance(exception, SIGTERMException):
caller = inspect.trace()[-1]
class_name = caller[0].f_locals["self"].__class__.__name__
self.raising_method = f"{class_name}:{caller.function}"
test_callback = MyTestCallback()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=4,
limit_val_batches=4,
val_check_interval=val_check_interval,
num_sanity_val_steps=0,
callbacks=[test_callback, OnExceptionCheckpoint(tmpdir)],
)
if should_signal:
with pytest.raises(SIGTERMException):
trainer.fit(model)
assert test_callback.raising_method == status
else:
trainer.fit(model)
assert trainer.received_sigterm == should_signal
return model
@pytest.mark.parametrize("on_last_batch", [False, True])
@pytest.mark.parametrize("val_check_interval", [0.5, 1.0])
@pytest.mark.parametrize("failure_on_training", [False, True])
@pytest.mark.parametrize("failure_on_step", [False, True])
@RunIf(skip_windows=True)
def test_auto_restart_under_signal(on_last_batch, val_check_interval, failure_on_training, failure_on_step, tmpdir):
if failure_on_step:
if on_last_batch:
if failure_on_training:
# Breaking on first validation batch.
# This is done to capture the random state of the validation dataloader.
status = "_EvaluationLoop:_evaluation_step"
else:
# when breaking on last batch of validation, we should exist on `run_end` val_check_interval == 1.0
status = "_FitLoop:on_advance_end" if val_check_interval == 1.0 else "_TrainingEpochLoop:on_advance_end"
else:
status = "_TrainingEpochLoop:on_advance_end" if failure_on_training else "_EvaluationLoop:_evaluation_step"
else:
if val_check_interval == 1.0:
status = "_FitLoop:on_advance_end"
else:
# `on_train_epoch_end` happens after `on_validation_epoch_end` since Lightning v1.4
status = "_FitLoop:on_advance_end" if failure_on_training else "_TrainingEpochLoop:on_advance_end"
_fit_model(tmpdir, True, val_check_interval, failure_on_step, failure_on_training, on_last_batch, status=status)