lightning/tests/tests_pytorch/utilities/test_torchdistx.py

93 lines
3.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from lightning_utilities.core.imports import RequirementCache
from torch import nn
from pytorch_lightning import Trainer
from pytorch_lightning.core.module import LightningModule
from pytorch_lightning.demos.boring_classes import BoringModel
from pytorch_lightning.utilities.meta import _is_deferred
from tests_pytorch.helpers.runif import RunIf
_TORCHDISTX_AVAILABLE = RequirementCache("torchdistx")
class SimpleBoringModel(LightningModule):
def __init__(self, num_layers):
super().__init__()
self.layer = nn.Sequential(*[nn.Linear(1, 1) for _ in range(num_layers)])
@pytest.mark.skipif(not _TORCHDISTX_AVAILABLE, reason=_TORCHDISTX_AVAILABLE.message)
def test_deferred_init_with_lightning_module():
from torchdistx.deferred_init import deferred_init, materialize_module
from torchdistx.fake import is_fake
model = deferred_init(SimpleBoringModel, 4)
weight = model.layer[0].weight
assert weight.device.type == "cpu"
assert is_fake(weight)
assert _is_deferred(model)
materialize_module(model)
materialize_module(model) # make sure it's idempotent
assert not _is_deferred(model)
weight = model.layer[0].weight
assert weight.device.type == "cpu"
assert not is_fake(weight)
@pytest.mark.skipif(not _TORCHDISTX_AVAILABLE, reason=_TORCHDISTX_AVAILABLE.message)
@pytest.mark.parametrize(
"trainer_kwargs",
(
{"accelerator": "auto", "devices": 1},
pytest.param(
{"strategy": "deepspeed_stage_3", "accelerator": "gpu", "devices": 2, "precision": 16},
marks=RunIf(min_cuda_gpus=2, deepspeed=True),
),
),
)
def test_deferred_init_with_trainer(tmpdir, trainer_kwargs):
from torchdistx.deferred_init import deferred_init
model = deferred_init(BoringModel)
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
enable_progress_bar=False,
enable_model_summary=False,
**trainer_kwargs
)
trainer.fit(model)
@pytest.mark.skipif(not _TORCHDISTX_AVAILABLE, reason=_TORCHDISTX_AVAILABLE.message)
def test_deferred_init_ddp_spawn(tmpdir):
from torchdistx.deferred_init import deferred_init
model = deferred_init(BoringModel)
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
enable_progress_bar=False,
enable_model_summary=False,
accelerator="auto",
devices="1",
strategy="ddp_spawn",
)
with pytest.raises(NotImplementedError, match="DDPSpawnStrategy` strategy does not support.*torchdistx"):
trainer.fit(model)