lightning/pytorch_lightning/metrics/utils.py

149 lines
4.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import torch
METRIC_EPS = 1e-6
def dim_zero_cat(x):
return torch.cat(x, dim=0)
def dim_zero_sum(x):
return torch.sum(x, dim=0)
def dim_zero_mean(x):
return torch.mean(x, dim=0)
def _flatten(x):
return [item for sublist in x for item in sublist]
def to_onehot(
tensor: torch.Tensor,
num_classes: int,
) -> torch.Tensor:
"""
Converts a dense label tensor to one-hot format
Args:
tensor: dense label tensor, with shape [N, d1, d2, ...]
num_classes: number of classes C
Output:
A sparse label tensor with shape [N, C, d1, d2, ...]
Example:
>>> x = torch.tensor([1, 2, 3])
>>> to_onehot(x, num_classes=4)
tensor([[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
"""
dtype, device, shape = tensor.dtype, tensor.device, tensor.shape
tensor_onehot = torch.zeros(shape[0], num_classes, *shape[1:],
dtype=dtype, device=device)
index = tensor.long().unsqueeze(1).expand_as(tensor_onehot)
return tensor_onehot.scatter_(1, index, 1.0)
def _check_same_shape(pred: torch.Tensor, target: torch.Tensor):
""" Check that predictions and target have the same shape, else raise error """
if pred.shape != target.shape:
raise RuntimeError('Predictions and targets are expected to have the same shape')
def _input_format_classification(
preds: torch.Tensor,
target: torch.Tensor,
threshold: float = 0.5
) -> Tuple[torch.Tensor, torch.Tensor]:
""" Convert preds and target tensors into label tensors
Args:
preds: either tensor with labels, tensor with probabilities/logits or
multilabel tensor
target: tensor with ground true labels
threshold: float used for thresholding multilabel input
Returns:
preds: tensor with labels
target: tensor with labels
"""
if not (len(preds.shape) == len(target.shape) or len(preds.shape) == len(target.shape) + 1):
raise ValueError(
"preds and target must have same number of dimensions, or one additional dimension for preds"
)
if len(preds.shape) == len(target.shape) + 1:
# multi class probabilites
preds = torch.argmax(preds, dim=1)
if len(preds.shape) == len(target.shape) and preds.dtype == torch.float:
# binary or multilabel probablities
preds = (preds >= threshold).long()
return preds, target
def _input_format_classification_one_hot(
num_classes: int,
preds: torch.Tensor,
target: torch.Tensor,
threshold: float = 0.5,
multilabel: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
""" Convert preds and target tensors into one hot spare label tensors
Args:
num_classes: number of classes
preds: either tensor with labels, tensor with probabilities/logits or
multilabel tensor
target: tensor with ground true labels
threshold: float used for thresholding multilabel input
multilabel: boolean flag indicating if input is multilabel
Returns:
preds: one hot tensor of shape [num_classes, -1] with predicted labels
target: one hot tensors of shape [num_classes, -1] with true labels
"""
if not (len(preds.shape) == len(target.shape) or len(preds.shape) == len(target.shape) + 1):
raise ValueError(
"preds and target must have same number of dimensions, or one additional dimension for preds"
)
if len(preds.shape) == len(target.shape) + 1:
# multi class probabilites
preds = torch.argmax(preds, dim=1)
if len(preds.shape) == len(target.shape) and preds.dtype == torch.long and num_classes > 1 and not multilabel:
# multi-class
preds = to_onehot(preds, num_classes=num_classes)
target = to_onehot(target, num_classes=num_classes)
elif len(preds.shape) == len(target.shape) and preds.dtype == torch.float:
# binary or multilabel probablities
preds = (preds >= threshold).long()
# transpose class as first dim and reshape
if len(preds.shape) > 1:
preds = preds.transpose(1, 0)
target = target.transpose(1, 0)
return preds.reshape(num_classes, -1), target.reshape(num_classes, -1)