512 lines
17 KiB
Python
512 lines
17 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import logging
|
|
import os
|
|
import platform
|
|
import time
|
|
from copy import deepcopy
|
|
from distutils.version import LooseVersion
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
|
|
from pytorch_lightning import Callback, Trainer
|
|
from pytorch_lightning.profiler import AdvancedProfiler, PyTorchProfiler, SimpleProfiler
|
|
from pytorch_lightning.profiler.pytorch import RegisterRecordFunction
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from pytorch_lightning.utilities.imports import _KINETO_AVAILABLE
|
|
from tests.helpers import BoringModel
|
|
from tests.helpers.runif import RunIf
|
|
|
|
PROFILER_OVERHEAD_MAX_TOLERANCE = 0.0005
|
|
|
|
|
|
def _get_python_cprofile_total_duration(profile):
|
|
return sum([x.inlinetime for x in profile.getstats()])
|
|
|
|
|
|
def _sleep_generator(durations):
|
|
"""
|
|
the profile_iterable method needs an iterable in which we can ensure that we're
|
|
properly timing how long it takes to call __next__
|
|
"""
|
|
for duration in durations:
|
|
time.sleep(duration)
|
|
yield duration
|
|
|
|
|
|
@pytest.fixture
|
|
def simple_profiler():
|
|
return SimpleProfiler()
|
|
|
|
|
|
@pytest.mark.parametrize(["action", "expected"], [
|
|
pytest.param("a", [3, 1]),
|
|
pytest.param("b", [2]),
|
|
pytest.param("c", [1]),
|
|
])
|
|
def test_simple_profiler_durations(simple_profiler, action: str, expected: list):
|
|
"""Ensure the reported durations are reasonably accurate."""
|
|
|
|
for duration in expected:
|
|
with simple_profiler.profile(action):
|
|
time.sleep(duration)
|
|
|
|
# different environments have different precision when it comes to time.sleep()
|
|
# see: https://github.com/PyTorchLightning/pytorch-lightning/issues/796
|
|
np.testing.assert_allclose(simple_profiler.recorded_durations[action], expected, rtol=0.2)
|
|
|
|
|
|
@pytest.mark.parametrize(["action", "expected"], [
|
|
pytest.param("a", [3, 1]),
|
|
pytest.param("b", [2]),
|
|
pytest.param("c", [1]),
|
|
])
|
|
def test_simple_profiler_iterable_durations(simple_profiler, action: str, expected: list):
|
|
"""Ensure the reported durations are reasonably accurate."""
|
|
iterable = _sleep_generator(expected)
|
|
|
|
for _ in simple_profiler.profile_iterable(iterable, action):
|
|
pass
|
|
|
|
# we exclude the last item in the recorded durations since that's when StopIteration is raised
|
|
np.testing.assert_allclose(simple_profiler.recorded_durations[action][:-1], expected, rtol=0.2)
|
|
|
|
|
|
def test_simple_profiler_overhead(simple_profiler, n_iter=5):
|
|
"""Ensure that the profiler doesn't introduce too much overhead during training."""
|
|
for _ in range(n_iter):
|
|
with simple_profiler.profile("no-op"):
|
|
pass
|
|
|
|
durations = np.array(simple_profiler.recorded_durations["no-op"])
|
|
assert all(durations < PROFILER_OVERHEAD_MAX_TOLERANCE)
|
|
|
|
|
|
def test_simple_profiler_value_errors(simple_profiler):
|
|
"""Ensure errors are raised where expected."""
|
|
|
|
action = "test"
|
|
with pytest.raises(ValueError):
|
|
simple_profiler.stop(action)
|
|
|
|
simple_profiler.start(action)
|
|
|
|
with pytest.raises(ValueError):
|
|
simple_profiler.start(action)
|
|
|
|
simple_profiler.stop(action)
|
|
|
|
|
|
def test_simple_profiler_deepcopy(tmpdir):
|
|
simple_profiler = SimpleProfiler(dirpath=tmpdir, filename="test")
|
|
simple_profiler.describe()
|
|
assert deepcopy(simple_profiler)
|
|
|
|
|
|
def test_simple_profiler_log_dir(tmpdir):
|
|
"""Ensure the profiler dirpath defaults to `trainer.log_dir` when not present"""
|
|
profiler = SimpleProfiler(filename="profiler")
|
|
assert profiler._log_dir is None
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
profiler=profiler,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
expected = tmpdir / "lightning_logs" / "version_0"
|
|
assert trainer.log_dir == expected
|
|
assert profiler._log_dir == trainer.log_dir
|
|
assert expected.join("fit-profiler.txt").exists()
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
def test_simple_profiler_distributed_files(tmpdir):
|
|
"""Ensure the proper files are saved in distributed"""
|
|
profiler = SimpleProfiler(dirpath=tmpdir, filename='profiler')
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=2,
|
|
accelerator="ddp_cpu",
|
|
num_processes=2,
|
|
profiler=profiler,
|
|
logger=False,
|
|
)
|
|
trainer.fit(model)
|
|
trainer.validate(model)
|
|
trainer.test(model)
|
|
|
|
actual = set(os.listdir(profiler.dirpath))
|
|
expected = {f"{stage}-profiler-{rank}.txt" for stage in ("fit", "validate", "test") for rank in (0, 1)}
|
|
assert actual == expected
|
|
|
|
for f in profiler.dirpath.listdir():
|
|
assert f.read_text('utf-8')
|
|
|
|
|
|
def test_simple_profiler_logs(tmpdir, caplog, simple_profiler):
|
|
"""Ensure that the number of printed logs is correct"""
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=2,
|
|
profiler=simple_profiler,
|
|
logger=False,
|
|
)
|
|
with caplog.at_level(logging.INFO, logger="pytorch_lightning.profiler.profilers"):
|
|
trainer.fit(model)
|
|
trainer.test(model)
|
|
|
|
assert caplog.text.count("Profiler Report") == 2
|
|
|
|
|
|
@pytest.fixture
|
|
def advanced_profiler(tmpdir):
|
|
return AdvancedProfiler(dirpath=tmpdir, filename="profiler")
|
|
|
|
|
|
@pytest.mark.parametrize(["action", "expected"], [
|
|
pytest.param("a", [3, 1]),
|
|
pytest.param("b", [2]),
|
|
pytest.param("c", [1]),
|
|
])
|
|
def test_advanced_profiler_durations(advanced_profiler, action: str, expected: list):
|
|
|
|
for duration in expected:
|
|
with advanced_profiler.profile(action):
|
|
time.sleep(duration)
|
|
|
|
# different environments have different precision when it comes to time.sleep()
|
|
# see: https://github.com/PyTorchLightning/pytorch-lightning/issues/796
|
|
recored_total_duration = _get_python_cprofile_total_duration(advanced_profiler.profiled_actions[action])
|
|
expected_total_duration = np.sum(expected)
|
|
np.testing.assert_allclose(recored_total_duration, expected_total_duration, rtol=0.2)
|
|
|
|
|
|
@pytest.mark.parametrize(["action", "expected"], [
|
|
pytest.param("a", [3, 1]),
|
|
pytest.param("b", [2]),
|
|
pytest.param("c", [1]),
|
|
])
|
|
def test_advanced_profiler_iterable_durations(advanced_profiler, action: str, expected: list):
|
|
"""Ensure the reported durations are reasonably accurate."""
|
|
iterable = _sleep_generator(expected)
|
|
|
|
for _ in advanced_profiler.profile_iterable(iterable, action):
|
|
pass
|
|
|
|
recored_total_duration = _get_python_cprofile_total_duration(advanced_profiler.profiled_actions[action])
|
|
expected_total_duration = np.sum(expected)
|
|
np.testing.assert_allclose(recored_total_duration, expected_total_duration, rtol=0.2)
|
|
|
|
|
|
def test_advanced_profiler_overhead(advanced_profiler, n_iter=5):
|
|
"""
|
|
ensure that the profiler doesn't introduce too much overhead during training
|
|
"""
|
|
for _ in range(n_iter):
|
|
with advanced_profiler.profile("no-op"):
|
|
pass
|
|
|
|
action_profile = advanced_profiler.profiled_actions["no-op"]
|
|
total_duration = _get_python_cprofile_total_duration(action_profile)
|
|
average_duration = total_duration / n_iter
|
|
assert average_duration < PROFILER_OVERHEAD_MAX_TOLERANCE
|
|
|
|
|
|
def test_advanced_profiler_describe(tmpdir, advanced_profiler):
|
|
"""
|
|
ensure the profiler won't fail when reporting the summary
|
|
"""
|
|
# record at least one event
|
|
with advanced_profiler.profile("test"):
|
|
pass
|
|
# log to stdout and print to file
|
|
advanced_profiler.describe()
|
|
path = advanced_profiler.dirpath / f"{advanced_profiler.filename}.txt"
|
|
data = path.read_text("utf-8")
|
|
assert len(data) > 0
|
|
|
|
|
|
def test_advanced_profiler_value_errors(advanced_profiler):
|
|
"""Ensure errors are raised where expected."""
|
|
|
|
action = "test"
|
|
with pytest.raises(ValueError):
|
|
advanced_profiler.stop(action)
|
|
|
|
advanced_profiler.start(action)
|
|
advanced_profiler.stop(action)
|
|
|
|
|
|
def test_advanced_profiler_deepcopy(advanced_profiler):
|
|
advanced_profiler.describe()
|
|
assert deepcopy(advanced_profiler)
|
|
|
|
|
|
@pytest.fixture
|
|
def pytorch_profiler(tmpdir):
|
|
return PyTorchProfiler(dirpath=tmpdir, filename="profiler")
|
|
|
|
|
|
@RunIf(max_torch="1.8.1")
|
|
def test_pytorch_profiler_describe(pytorch_profiler):
|
|
"""Ensure the profiler won't fail when reporting the summary."""
|
|
with pytorch_profiler.profile("on_test_start"):
|
|
torch.tensor(0)
|
|
|
|
# log to stdout and print to file
|
|
pytorch_profiler.describe()
|
|
path = pytorch_profiler.dirpath / f"{pytorch_profiler.filename}.txt"
|
|
data = path.read_text("utf-8")
|
|
assert len(data) > 0
|
|
|
|
|
|
def test_pytorch_profiler_raises(pytorch_profiler):
|
|
"""Ensure errors are raised where expected."""
|
|
with pytest.raises(MisconfigurationException, match="profiled_functions` and `PyTorchProfiler.record"):
|
|
PyTorchProfiler(profiled_functions=["a"], record_functions=["b"])
|
|
|
|
|
|
@RunIf(min_torch="1.6.0")
|
|
def test_advanced_profiler_cprofile_deepcopy(tmpdir):
|
|
"""Checks for pickle issue reported in #6522"""
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=True,
|
|
profiler="advanced",
|
|
stochastic_weight_avg=True,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=2, special=True)
|
|
def test_pytorch_profiler_trainer_ddp(tmpdir, pytorch_profiler):
|
|
"""Ensure that the profiler can be given to the training and default step are properly recorded. """
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_train_batches=5,
|
|
limit_val_batches=5,
|
|
profiler=pytorch_profiler,
|
|
accelerator="ddp",
|
|
gpus=2,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
expected = {'validation_step'}
|
|
if not _KINETO_AVAILABLE:
|
|
expected |= {'training_step_and_backward', 'training_step', 'backward'}
|
|
for name in expected:
|
|
assert sum(e.name == name for e in pytorch_profiler.function_events), name
|
|
|
|
files = set(os.listdir(pytorch_profiler.dirpath))
|
|
expected = f"fit-profiler-{trainer.local_rank}.txt"
|
|
assert expected in files
|
|
|
|
path = pytorch_profiler.dirpath / expected
|
|
assert path.read_text("utf-8")
|
|
|
|
if _KINETO_AVAILABLE:
|
|
files = os.listdir(pytorch_profiler.dirpath)
|
|
files = [file for file in files if file.endswith('.json')]
|
|
assert len(files) == 2, files
|
|
local_rank = trainer.local_rank
|
|
assert any(f'training_step_{local_rank}' in f for f in files)
|
|
assert any(f'validation_step_{local_rank}' in f for f in files)
|
|
|
|
|
|
def test_pytorch_profiler_trainer_test(tmpdir):
|
|
"""Ensure that the profiler can be given to the trainer and test step are properly recorded. """
|
|
pytorch_profiler = PyTorchProfiler(dirpath=tmpdir, filename="profile", schedule=None)
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_test_batches=2,
|
|
profiler=pytorch_profiler,
|
|
)
|
|
trainer.test(model)
|
|
|
|
assert sum(e.name == 'test_step' for e in pytorch_profiler.function_events)
|
|
|
|
path = pytorch_profiler.dirpath / f"test-{pytorch_profiler.filename}.txt"
|
|
assert path.read_text("utf-8")
|
|
|
|
if _KINETO_AVAILABLE:
|
|
files = sorted([file for file in os.listdir(tmpdir) if file.endswith('.json')])
|
|
assert any(f'test_step_{trainer.local_rank}' in f for f in files)
|
|
|
|
|
|
def test_pytorch_profiler_trainer_predict(tmpdir):
|
|
"""Ensure that the profiler can be given to the trainer and predict function are properly recorded. """
|
|
pytorch_profiler = PyTorchProfiler(dirpath=tmpdir, filename="profile", schedule=None)
|
|
model = BoringModel()
|
|
model.predict_dataloader = model.train_dataloader
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_predict_batches=2,
|
|
profiler=pytorch_profiler,
|
|
)
|
|
trainer.predict(model)
|
|
|
|
assert sum(e.name == 'predict_step' for e in pytorch_profiler.function_events)
|
|
path = pytorch_profiler.dirpath / f"predict-{pytorch_profiler.filename}.txt"
|
|
assert path.read_text("utf-8")
|
|
|
|
|
|
def test_pytorch_profiler_trainer_validate(tmpdir):
|
|
"""Ensure that the profiler can be given to the trainer and validate function are properly recorded. """
|
|
pytorch_profiler = PyTorchProfiler(dirpath=tmpdir, filename="profile", schedule=None)
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_val_batches=2,
|
|
profiler=pytorch_profiler,
|
|
)
|
|
trainer.validate(model)
|
|
|
|
assert sum(e.name == 'validation_step' for e in pytorch_profiler.function_events)
|
|
|
|
path = pytorch_profiler.dirpath / f"validate-{pytorch_profiler.filename}.txt"
|
|
assert path.read_text("utf-8")
|
|
|
|
|
|
def test_pytorch_profiler_nested(tmpdir):
|
|
"""Ensure that the profiler handles nested context"""
|
|
|
|
pytorch_profiler = PyTorchProfiler(
|
|
record_functions={"a", "b", "c"}, use_cuda=False, dirpath=tmpdir, filename="profiler", schedule=None
|
|
)
|
|
|
|
with pytorch_profiler.profile("a"):
|
|
a = torch.ones(42)
|
|
with pytorch_profiler.profile("b"):
|
|
b = torch.zeros(42)
|
|
with pytorch_profiler.profile("c"):
|
|
_ = a + b
|
|
|
|
pytorch_profiler.describe()
|
|
|
|
events_name = {e.name for e in pytorch_profiler.function_events}
|
|
|
|
if platform.system() == "Windows":
|
|
expected = {'a', 'add', 'b', 'c', 'profiler::_record_function_enter', 'profiler::_record_function_exit'}
|
|
else:
|
|
expected = {
|
|
'signed char', 'add', 'profiler::_record_function_exit', 'bool', 'char', 'profiler::_record_function_enter'
|
|
}
|
|
|
|
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
|
expected = {'add', 'zeros', 'ones', 'zero_', 'b', 'fill_', 'c', 'a', 'empty'}
|
|
|
|
if LooseVersion(torch.__version__) >= LooseVersion("1.7.0"):
|
|
expected = {
|
|
'aten::zeros', 'aten::add', 'aten::zero_', 'c', 'b', 'a', 'aten::fill_', 'aten::empty', 'aten::ones'
|
|
}
|
|
|
|
assert events_name == expected, (events_name, torch.__version__, platform.system())
|
|
|
|
|
|
@RunIf(min_gpus=1, special=True)
|
|
def test_pytorch_profiler_nested_emit_nvtx(tmpdir):
|
|
"""
|
|
This test check emit_nvtx is correctly supported
|
|
"""
|
|
profiler = PyTorchProfiler(use_cuda=True, emit_nvtx=True)
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
profiler=profiler,
|
|
gpus=1,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_torch="1.5.0")
|
|
def test_register_record_function(tmpdir):
|
|
|
|
use_cuda = torch.cuda.is_available()
|
|
pytorch_profiler = PyTorchProfiler(
|
|
export_to_chrome=False,
|
|
record_functions={"a"},
|
|
use_cuda=use_cuda,
|
|
dirpath=tmpdir,
|
|
filename="profiler",
|
|
schedule=None,
|
|
on_trace_ready=None,
|
|
)
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer = torch.nn.Sequential(torch.nn.Linear(1, 1), torch.nn.ReLU(), torch.nn.Linear(1, 1))
|
|
|
|
model = TestModel()
|
|
input = torch.rand((1, 1))
|
|
|
|
if use_cuda:
|
|
model = model.cuda()
|
|
input = input.cuda()
|
|
|
|
with pytorch_profiler.profile("a"):
|
|
with RegisterRecordFunction(model):
|
|
model(input)
|
|
|
|
pytorch_profiler.describe()
|
|
event_names = [e.name for e in pytorch_profiler.function_events]
|
|
assert 'torch.nn.modules.container.Sequential: layer' in event_names
|
|
assert 'torch.nn.modules.linear.Linear: layer.0' in event_names
|
|
assert 'torch.nn.modules.activation.ReLU: layer.1' in event_names
|
|
assert 'torch.nn.modules.linear.Linear: layer.2' in event_names
|
|
|
|
|
|
@pytest.mark.parametrize("cls", (SimpleProfiler, AdvancedProfiler, PyTorchProfiler))
|
|
def test_profiler_teardown(tmpdir, cls):
|
|
"""
|
|
This test checks if profiler teardown method is called when trainer is exiting.
|
|
"""
|
|
|
|
class TestCallback(Callback):
|
|
|
|
def on_fit_end(self, trainer, *args, **kwargs) -> None:
|
|
# describe sets it to None
|
|
assert trainer.profiler._output_file is None
|
|
|
|
profiler = cls(dirpath=tmpdir, filename="profiler")
|
|
model = BoringModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, profiler=profiler, callbacks=[TestCallback()])
|
|
trainer.fit(model)
|
|
|
|
assert profiler._output_file is None
|
|
|
|
|
|
def test_pytorch_profiler_deepcopy(tmpdir):
|
|
pytorch_profiler = PyTorchProfiler(dirpath=tmpdir, filename="profiler", schedule=None)
|
|
pytorch_profiler.start("on_train_start")
|
|
torch.tensor(1)
|
|
pytorch_profiler.describe()
|
|
assert deepcopy(pytorch_profiler)
|