lightning/pytorch_lightning/callbacks/model_checkpoint.py

411 lines
17 KiB
Python

"""
Model Checkpointing
===================
Automatically save model checkpoints during training.
"""
import os
import re
from typing import Optional
import numpy as np
import torch
from pytorch_lightning import _logger as log
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.utilities import rank_zero_warn, rank_zero_only
from pytorch_lightning.utilities.cloud_io import gfile, makedirs, is_remote_path
class ModelCheckpoint(Callback):
r"""
Save the model after every epoch if it improves.
After training finishes, use :attr:`best_model_path` to retrieve the path to the
best checkpoint file and :attr:`best_model_score` to retrieve its score.
Args:
filepath: path to save the model file.
Can contain named formatting options to be auto-filled.
Example::
# custom path
# saves a file like: my/path/epoch_0.ckpt
>>> checkpoint_callback = ModelCheckpoint('my/path/')
# save any arbitrary metrics like `val_loss`, etc. in name
# saves a file like: my/path/epoch=2-val_loss=0.2_other_metric=0.3.ckpt
>>> checkpoint_callback = ModelCheckpoint(
... filepath='my/path/{epoch}-{val_loss:.2f}-{other_metric:.2f}'
... )
By default, filepath is `None` and will be set at runtime to the location
specified by :class:`~pytorch_lightning.trainer.trainer.Trainer`'s
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.default_root_dir` or
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.weights_save_path` arguments,
and if the Trainer uses a logger, the path will also contain logger name and version.
monitor: quantity to monitor.
verbose: verbosity mode. Default: ``False``.
save_last: always saves the model at the end of the epoch. Default: ``False``.
save_top_k: if ``save_top_k == k``,
the best k models according to
the quantity monitored will be saved.
if ``save_top_k == 0``, no models are saved.
if ``save_top_k == -1``, all models are saved.
Please note that the monitors are checked every `period` epochs.
if ``save_top_k >= 2`` and the callback is called multiple
times inside an epoch, the name of the saved file will be
appended with a version count starting with `v0`.
mode: one of {auto, min, max}.
If ``save_top_k != 0``, the decision
to overwrite the current save file is made
based on either the maximization or the
minimization of the monitored quantity. For `val_acc`,
this should be `max`, for `val_loss` this should
be `min`, etc. In `auto` mode, the direction is
automatically inferred from the name of the monitored quantity.
save_weights_only: if ``True``, then only the model's weights will be
saved (``model.save_weights(filepath)``), else the full model
is saved (``model.save(filepath)``).
period: Interval (number of epochs) between checkpoints.
Example::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import ModelCheckpoint
# saves checkpoints to 'my/path/' whenever 'val_loss' has a new min
>>> checkpoint_callback = ModelCheckpoint(filepath='my/path/')
>>> trainer = Trainer(checkpoint_callback=checkpoint_callback)
# save epoch and val_loss in name
# saves a file like: my/path/sample-mnist_epoch=02_val_loss=0.32.ckpt
>>> checkpoint_callback = ModelCheckpoint(
... filepath='my/path/sample-mnist_{epoch:02d}-{val_loss:.2f}'
... )
# retrieve the best checkpoint after training
checkpoint_callback = ModelCheckpoint(filepath='my/path/')
trainer = Trainer(checkpoint_callback=checkpoint_callback)
model = ...
trainer.fit(model)
checkpoint_callback.best_model_path
"""
CHECKPOINT_NAME_LAST = "last.ckpt"
CHECKPOINT_STATE_BEST_SCORE = "checkpoint_callback_best_model_score"
CHECKPOINT_STATE_BEST_PATH = "checkpoint_callback_best_model_path"
def __init__(self, filepath: Optional[str] = None, monitor: str = 'val_loss', verbose: bool = False,
save_last: bool = False, save_top_k: int = 1, save_weights_only: bool = False,
mode: str = 'auto', period: int = 1, prefix: str = ''):
super().__init__()
if(filepath):
filepath = str(filepath) # the tests pass in a py.path.local but we want a str
if save_top_k > 0 and filepath is not None and gfile.isdir(filepath) and len(gfile.listdir(filepath)) > 0:
rank_zero_warn(
f"Checkpoint directory {filepath} exists and is not empty with save_top_k != 0."
"All files in this directory will be deleted when a checkpoint is saved!"
)
self._rank = 0
self.monitor = monitor
self.verbose = verbose
if filepath is None: # will be determined by trainer at runtime
self.dirpath, self.filename = None, None
else:
if gfile.isdir(filepath):
self.dirpath, self.filename = filepath, '{epoch}'
else:
if not is_remote_path(filepath): # dont normalize remote paths
filepath = os.path.realpath(filepath)
self.dirpath, self.filename = os.path.split(filepath)
makedirs(self.dirpath) # calls with exist_ok
self.save_last = save_last
self.save_top_k = save_top_k
self.save_weights_only = save_weights_only
self.period = period
self.epoch_last_check = None
self.prefix = prefix
self.best_k_models = {}
# {filename: monitor}
self.kth_best_model_path = ''
self.best_model_score = 0
self.best_model_path = ''
self.save_function = None
self.warned_result_obj = False
torch_inf = torch.tensor(np.Inf)
mode_dict = {
'min': (torch_inf, 'min'),
'max': (-torch_inf, 'max'),
'auto': (-torch_inf, 'max') if 'acc' in self.monitor or self.monitor.startswith('fmeasure')
else (torch_inf, 'min'),
}
if mode not in mode_dict:
rank_zero_warn(f'ModelCheckpoint mode {mode} is unknown, '
f'fallback to auto mode.', RuntimeWarning)
mode = 'auto'
self.kth_value, self.mode = mode_dict[mode]
@property
def best(self):
rank_zero_warn("Attribute `best` has been renamed to `best_model_score` since v0.8.0"
" and will be removed in v0.10.0", DeprecationWarning)
return self.best_model_score
@property
def kth_best_model(self):
rank_zero_warn("Attribute `kth_best_model` has been renamed to `kth_best_model_path` since v0.8.0"
" and will be removed in v0.10.0", DeprecationWarning)
return self.kth_best_model_path
def _del_model(self, filepath):
if gfile.exists(filepath):
try:
# in compat mode, remove is not implemented so if running this
# against an actual remove file system and the correct remote
# dependencies exist then this will work fine.
gfile.remove(filepath)
except AttributeError:
if is_remote_path(filepath):
log.warning("Unable to remove stale checkpoints due to running gfile in compatibility mode."
" Please install tensorflow to run gfile in full mode"
" if writing checkpoints to remote locations")
else:
os.remove(filepath)
def _save_model(self, filepath, trainer, pl_module):
# in debugging, track when we save checkpoints
trainer.dev_debugger.track_checkpointing_history(filepath)
# make paths
if not gfile.exists(os.path.dirname(filepath)):
makedirs(os.path.dirname(filepath))
# delegate the saving to the model
if self.save_function is not None:
self.save_function(filepath, self.save_weights_only)
else:
raise ValueError(".save_function() not set")
def check_monitor_top_k(self, current):
less_than_k_models = len(self.best_k_models) < self.save_top_k
if less_than_k_models:
return True
if not isinstance(current, torch.Tensor):
rank_zero_warn(
f'{current} is supposed to be a `torch.Tensor`. Saving checkpoint may not work correctly.'
f' HINT: check the value of {self.monitor} in your validation loop', RuntimeWarning
)
current = torch.tensor(current)
monitor_op = {
"min": torch.lt,
"max": torch.gt,
}[self.mode]
return monitor_op(current, self.best_k_models[self.kth_best_model_path])
def format_checkpoint_name(self, epoch, metrics, ver=None):
"""Generate a filename according to the defined template.
Example::
>>> tmpdir = os.path.dirname(__file__)
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}'))
>>> os.path.basename(ckpt.format_checkpoint_name(0, {}))
'epoch=0.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch:03d}'))
>>> os.path.basename(ckpt.format_checkpoint_name(5, {}))
'epoch=005.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}-{val_loss:.2f}'))
>>> os.path.basename(ckpt.format_checkpoint_name(2, dict(val_loss=0.123456)))
'epoch=2-val_loss=0.12.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{missing:d}'))
>>> os.path.basename(ckpt.format_checkpoint_name(0, {}))
'missing=0.ckpt'
"""
# check if user passed in keys to the string
groups = re.findall(r'(\{.*?)[:\}]', self.filename)
if len(groups) == 0:
# default name
filename = f'{self.prefix}_ckpt_epoch_{epoch}'
else:
metrics['epoch'] = epoch
filename = self.filename
for tmp in groups:
name = tmp[1:]
filename = filename.replace(tmp, name + '={' + name)
if name not in metrics:
metrics[name] = 0
filename = filename.format(**metrics)
str_ver = f'_v{ver}' if ver is not None else ''
filepath = os.path.join(self.dirpath, self.prefix + filename + str_ver + '.ckpt')
return filepath
@rank_zero_only
def on_train_start(self, trainer, pl_module):
"""
Determines model checkpoint save directory at runtime. References attributes from the
trainer's logger to determine where to save checkpoints.
The base path for saving weights is set in this priority:
1. Checkpoint callback's path (if passed in)
2. The default_root_dir from trainer if trainer has no logger
3. The weights_save_path from trainer, if user provides it
4. User provided weights_saved_path
The base path gets extended with logger name and version (if these are available)
and subfolder "checkpoints".
"""
if self.dirpath is not None:
return # short circuit
self.filename = '{epoch}'
if trainer.logger is not None:
if trainer.weights_save_path != trainer.default_root_dir:
# the user has changed weights_save_path, it overrides anything
save_dir = trainer.weights_save_path
else:
save_dir = trainer.logger.save_dir or trainer.default_root_dir
version = trainer.logger.version if isinstance(
trainer.logger.version, str) else f'version_{trainer.logger.version}'
ckpt_path = os.path.join(
save_dir,
trainer.logger.name,
version,
"checkpoints"
)
else:
ckpt_path = os.path.join(trainer.weights_save_path, "checkpoints")
self.dirpath = ckpt_path
assert trainer.global_rank == 0, 'tried to make a checkpoint from non global_rank=0'
if not gfile.exists(self.dirpath):
makedirs(self.dirpath)
def __warn_deprecated_monitor_key(self):
using_result_obj = os.environ.get('PL_USING_RESULT_OBJ', None)
invalid_key = self.monitor not in ['val_loss', 'checkpoint_on']
if using_result_obj and not self.warned_result_obj and invalid_key:
self.warned_result_obj = True
m = f"""
When using EvalResult(early_stop_on=X) or TrainResult(early_stop_on=X) the
'monitor' key of ModelCheckpoint has no effect.
Remove ModelCheckpoint(monitor='{self.monitor}) to fix')
"""
rank_zero_warn(m)
@rank_zero_only
def on_validation_end(self, trainer, pl_module):
# only run on main process
if trainer.global_rank != 0:
return
# TODO: remove when dict results are deprecated
self.__warn_deprecated_monitor_key()
metrics = trainer.callback_metrics
epoch = trainer.current_epoch
# support structured results
if metrics.get('checkpoint_on') is not None:
self.monitor = 'checkpoint_on'
# conditioned val metrics override conditioned train loop metrics
if metrics.get('val_checkpoint_on') is not None:
self.monitor = 'val_checkpoint_on'
if self.save_top_k == 0:
# no models are saved
return
if self.epoch_last_check is not None and (epoch - self.epoch_last_check) < self.period:
# skipping in this term
return
self.epoch_last_check = epoch
filepath = self.format_checkpoint_name(epoch, metrics)
version_cnt = 0
while gfile.exists(filepath):
filepath = self.format_checkpoint_name(epoch, metrics, ver=version_cnt)
# this epoch called before
version_cnt += 1
if self.save_top_k != -1:
current = metrics.get(self.monitor)
if not isinstance(current, torch.Tensor):
rank_zero_warn(
f'The metric you returned {current} must be a `torch.Tensor` instance, checkpoint not saved'
f' HINT: what is the value of {self.monitor} in validation_epoch_end()?', RuntimeWarning
)
if current is not None:
current = torch.tensor(current)
if current is None:
rank_zero_warn(
f'Can save best model only with {self.monitor} available, skipping.', RuntimeWarning
)
elif self.check_monitor_top_k(current):
self._do_check_save(filepath, current, epoch, trainer, pl_module)
elif self.verbose > 0:
log.info(f'\nEpoch {epoch:05d}: {self.monitor} was not in top {self.save_top_k}')
else:
if self.verbose > 0:
log.info(f'\nEpoch {epoch:05d}: saving model to {filepath}')
assert trainer.global_rank == 0, 'tried to make a checkpoint from non global_rank=0'
self._save_model(filepath, trainer, pl_module)
if self.save_last:
filepath = os.path.join(self.dirpath, self.prefix + ModelCheckpoint.CHECKPOINT_NAME_LAST)
self._save_model(filepath, trainer, pl_module)
def _do_check_save(self, filepath, current, epoch, trainer, pl_module):
# remove kth
del_list = []
if len(self.best_k_models) == self.save_top_k and self.save_top_k > 0:
delpath = self.kth_best_model_path
self.best_k_models.pop(self.kth_best_model_path)
del_list.append(delpath)
self.best_k_models[filepath] = current
if len(self.best_k_models) == self.save_top_k:
# monitor dict has reached k elements
_op = max if self.mode == 'min' else min
self.kth_best_model_path = _op(self.best_k_models,
key=self.best_k_models.get)
self.kth_value = self.best_k_models[self.kth_best_model_path]
_op = min if self.mode == 'min' else max
self.best_model_path = _op(self.best_k_models, key=self.best_k_models.get)
self.best_model_score = self.best_k_models[self.best_model_path]
if self.verbose > 0:
log.info(
f'\nEpoch {epoch:05d}: {self.monitor} reached'
f' {current:0.5f} (best {self.best_model_score:0.5f}), saving model to'
f' {filepath} as top {self.save_top_k}')
self._save_model(filepath, trainer, pl_module)
for cur_path in del_list:
if cur_path != filepath:
self._del_model(cur_path)