lightning/pytorch_lightning/callbacks/gpu_usage_logger.py

141 lines
6.4 KiB
Python

"""
GPU Usage Logger
====================
Log GPU memory and GPU usage during training
"""
from pytorch_lightning.callbacks.base import Callback
import subprocess
import os
import time
class GpuUsageLogger(Callback):
r"""
Automatically logs GPU memory and GPU usage during training stage.
Args:
memory_utilisation: Set to ``True`` to log used, free and percentage of memory
utilisation at starts and ends of each step. Default: ``True``.
From nvidia-smi --help-query-gpu
memory.used = ```Total memory allocated by active contexts.```
memory.free = ```Total free memory.```
gpu_utilisation: Set to ``True`` to log percentage of GPU utilisation.
at starts and ends of each step. Default: ``True``.
intra_step_time: Set to ``True`` to log the time of each step. Default: ``False``
inter_step_time: Set to ``True`` to log the time between the end of one step
and the start of the next. Default: ``False``
fan_speed: Set to ``True`` to log percentage of fan speed. Default: ``False``.
temperature: Set to ``True`` to log the memory and gpu temperature in degrees C.
Default: ``False``
Example::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import GpuUsageLogger
>>> gpu_usage = GpuUsageLogger()
>>> trainer = Trainer(callbacks=[gpu_usage])
Gpu usage is mainly based on nvidia-smi --query-gpu command.
The description of the queries used here as appears in
in ``nvidia-smi --help-query-gpu``:
"fan.speed"
```The fan speed value is the percent of maximum speed that the device's fan is currently
intended to run at. It ranges from 0 to 100 %. Note: The reported speed is the intended
fan speed. If the fan is physically blocked and unable to spin, this output will not match
the actual fan speed. Many parts do not report fan speeds because they rely on cooling via
fans in the surrounding enclosure.```
"memory.used"
```Total memory allocated by active contexts.```
"memory.free"
```Total free memory.```
"utilization.gpu"
```Percent of time over the past sample period during which one or more kernels was executing
on the GPU. The sample period may be between 1 second and 1/6 second depending on the product.```
"utilization.memory"
```Percent of time over the past sample period during which global (device) memory was being
read or written. The sample period may be between 1 second and 1/6 second depending on the
product.```
"temperature.gpu"
```Core GPU temperature. in degrees C.```
"temperature.memory"
```HBM memory temperature. in degrees C.```
"""
def __init__(self, memory_utilisation: bool = True, gpu_utilisation: bool = True,
intra_step_time: bool = False, inter_step_time: bool = False,
fan_speed: bool = False, temperature: bool = False):
super(GpuUsageLogger).__init__()
self.memory_utilisation = memory_utilisation
self.gpu_utilisation = gpu_utilisation
self.intra_step_time = intra_step_time
self.inter_step_time = inter_step_time
self.fan_speed = fan_speed
self.temperature = temperature
self.snap_intra_step_time = None
self.snap_inter_step_time = None
def on_batch_start(self, trainer, pl_module):
if self.gpu_utilisation:
self._log_gpu(trainer)
if self.memory_utilisation:
self._log_memory(trainer)
if self.inter_step_time:
# First log at beginning of second step
if self.snap_inter_step_time:
trainer.logger.log_metrics({'Batch_Time/inter_step (ms)':
(time.time() - self.snap_inter_step_time) * 1000},
step=trainer.global_step)
if self.intra_step_time:
self.snap_intra_step_time = time.time()
def on_batch_end(self, trainer, pl_module):
if self.gpu_utilisation:
self._log_gpu(trainer)
if self.memory_utilisation:
self._log_memory(trainer)
if self.fan_speed:
trainer.logger.log_metrics(self._get_gpu_stat("fan.speed", "%"), step=trainer.global_step)
if self.temperature:
trainer.logger.log_metrics(self._get_gpu_stat("temperature.gpu", "degrees C"), step=trainer.global_step)
trainer.logger.log_metrics(self._get_gpu_stat("temperature.memory", "degrees C"), step=trainer.global_step)
if self.inter_step_time:
self.snap_inter_step_time = time.time()
if self.intra_step_time:
if self.snap_intra_step_time:
trainer.logger.log_metrics({'Batch_Time/intra_step (ms)':
(time.time() - self.snap_intra_step_time) * 1000},
step=trainer.global_step)
def on_train_epoch_start(self, trainer, pl_module):
self.snap_intra_step_time = None
self.snap_inter_step_time = None
@staticmethod
def _get_gpu_stat(pitem: str, unit: str):
result = subprocess.run(["/bin/nvidia-smi", f"--query-gpu={pitem}", "--format=csv,nounits,noheader"],
encoding="utf-8", stdout=subprocess.PIPE,
stderr=subprocess.PIPE, # for backward compatibility with python version 3.6
check=True)
try:
gpu_usage = [float(x) for x in result.stdout.strip().split(os.linesep)]
except ValueError:
gpu_usage = [0]
return {f"GPU_{pitem}/gpu_id_{index} ({unit})": usage for index, usage in enumerate(gpu_usage)}
def _log_gpu(self, trainer):
trainer.logger.log_metrics(self._get_gpu_stat("utilization.gpu", "%"), step=trainer.global_step)
def _log_memory(self, trainer):
trainer.logger.log_metrics(self._get_gpu_stat("memory.used", "MB"), step=trainer.global_step)
trainer.logger.log_metrics(self._get_gpu_stat("memory.free", "MB"), step=trainer.global_step)
trainer.logger.log_metrics(self._get_gpu_stat("utilization.memory", "%"), step=trainer.global_step)