lightning/tests/tests_pytorch/profilers/test_xla_profiler.py

60 lines
2.0 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from multiprocessing import Event, Process
from unittest import mock
import pytest
from pytorch_lightning import Trainer
from pytorch_lightning.demos.boring_classes import BoringModel
from pytorch_lightning.profilers import XLAProfiler
from tests_pytorch.helpers.runif import RunIf
@RunIf(tpu=True)
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
def test_xla_profiler_instance(tmpdir):
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, profiler="xla", accelerator="tpu", devices=8)
assert isinstance(trainer.profiler, XLAProfiler)
trainer.fit(model)
@pytest.mark.skip(reason="XLA Profiler doesn't support Prog. capture yet")
def test_xla_profiler_prog_capture(tmpdir):
import torch_xla.debug.profiler as xp
import torch_xla.utils.utils as xu
port = xu.get_free_tcp_ports()[0]
training_started = Event()
def train_worker():
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=4, profiler="xla", accelerator="tpu", devices=8)
trainer.fit(model)
p = Process(target=train_worker, daemon=True)
p.start()
training_started.wait(120)
logdir = str(tmpdir)
xp.trace(f"localhost:{port}", logdir, duration_ms=2000, num_tracing_attempts=5, delay_ms=1000)
p.terminate()
assert os.isfile(os.path.join(logdir, "plugins", "profile", "*", "*.xplane.pb"))