lightning/tests/base/develop_pipelines.py

142 lines
5.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.trainer.states import TrainerState
from pytorch_lightning.utilities import DistributedType
from tests.base import BoringModel
from tests.base.develop_utils import get_default_logger, load_model_from_checkpoint, reset_seed
def run_model_test_without_loggers(trainer_options, model, min_acc: float = 0.50):
reset_seed()
# fit model
trainer = Trainer(**trainer_options)
trainer.fit(model)
# correct result and ok accuracy
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
pretrained_model = load_model_from_checkpoint(
trainer.logger,
trainer.checkpoint_callback.best_model_path,
type(model)
)
# test new model accuracy
test_loaders = model.test_dataloader()
if not isinstance(test_loaders, list):
test_loaders = [test_loaders]
for dataloader in test_loaders:
run_prediction(pretrained_model, dataloader, min_acc=min_acc)
if trainer._distrib_type in (DistributedType.DDP, DistributedType.DDP_SPAWN):
# on hpc this would work fine... but need to hack it for the purpose of the test
trainer.model = pretrained_model
trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers()
def run_model_test(trainer_options, model, on_gpu: bool = True, version=None,
with_hpc: bool = True, min_acc: float = 0.25):
reset_seed()
save_dir = trainer_options['default_root_dir']
# logger file to get meta
logger = get_default_logger(save_dir, version=version)
trainer_options.update(logger=logger)
trainer = Trainer(**trainer_options)
initial_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()])
trainer.fit(model)
post_train_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()])
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
# Check that the model is actually changed post-training
change_ratio = torch.norm(initial_values - post_train_values)
assert change_ratio > 0.1, f"the model is changed of {change_ratio}"
# test model loading
pretrained_model = load_model_from_checkpoint(logger, trainer.checkpoint_callback.best_model_path, type(model))
# test new model accuracy
test_loaders = model.test_dataloader()
if not isinstance(test_loaders, list):
test_loaders = [test_loaders]
for dataloader in test_loaders:
run_prediction(pretrained_model, dataloader, min_acc=min_acc)
if with_hpc:
if trainer._distrib_type in (DistributedType.DDP, DistributedType.DDP_SPAWN, DistributedType.DDP2):
# on hpc this would work fine... but need to hack it for the purpose of the test
trainer.model = pretrained_model
trainer.optimizers, trainer.lr_schedulers, trainer.optimizer_frequencies = trainer.init_optimizers(
pretrained_model
)
# test HPC saving
trainer.checkpoint_connector.hpc_save(save_dir, logger)
# test HPC loading
checkpoint_path = trainer.checkpoint_connector.get_max_ckpt_path_from_folder(save_dir)
trainer.checkpoint_connector.hpc_load(checkpoint_path, on_gpu=on_gpu)
def run_prediction(trained_model, dataloader, dp=False, min_acc=0.25):
if isinstance(trained_model, BoringModel):
return _boring_model_run_prediction(trained_model, dataloader, dp, min_acc)
else:
return _eval_model_template_run_prediction(trained_model, dataloader, dp, min_acc)
def _eval_model_template_run_prediction(trained_model, dataloader, dp=False, min_acc=0.50):
# run prediction on 1 batch
batch = next(iter(dataloader))
x, y = batch
x = x.view(x.size(0), -1)
if dp:
with torch.no_grad():
output = trained_model(batch, 0)
acc = output['val_acc']
acc = torch.mean(acc).item()
else:
with torch.no_grad():
y_hat = trained_model(x)
y_hat = y_hat.cpu()
# acc
labels_hat = torch.argmax(y_hat, dim=1)
y = y.cpu()
acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
acc = torch.tensor(acc)
acc = acc.item()
assert acc >= min_acc, f"This model is expected to get > {min_acc} in test set (it got {acc})"
def _boring_model_run_prediction(trained_model, dataloader, dp=False, min_acc=0.25):
# run prediction on 1 batch
batch = next(iter(dataloader))
with torch.no_grad():
output = trained_model(batch)
acc = trained_model.loss(batch, output)
assert acc >= min_acc, f"This model is expected to get, {min_acc} in test set but got {acc}"