144 lines
4.7 KiB
Python
144 lines
4.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import platform
|
|
from typing import Optional
|
|
from warnings import warn
|
|
|
|
from torch.utils.data import DataLoader, random_split
|
|
|
|
from pl_examples import _DATASETS_PATH, _TORCHVISION_AVAILABLE
|
|
from pytorch_lightning import LightningDataModule
|
|
|
|
if _TORCHVISION_AVAILABLE:
|
|
from torchvision import transforms as transform_lib
|
|
from torchvision.datasets import MNIST
|
|
else:
|
|
from tests.base.datasets import MNIST
|
|
|
|
|
|
class MNISTDataModule(LightningDataModule):
|
|
"""
|
|
Standard MNIST, train, val, test splits and transforms
|
|
|
|
>>> MNISTDataModule() # doctest: +ELLIPSIS
|
|
<...mnist_datamodule.MNISTDataModule object at ...>
|
|
"""
|
|
|
|
name = "mnist"
|
|
|
|
def __init__(
|
|
self,
|
|
data_dir: str = _DATASETS_PATH,
|
|
val_split: int = 5000,
|
|
num_workers: int = 16,
|
|
normalize: bool = False,
|
|
seed: int = 42,
|
|
batch_size: int = 32,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Args:
|
|
data_dir: where to save/load the data
|
|
val_split: how many of the training images to use for the validation split
|
|
num_workers: how many workers to use for loading data
|
|
normalize: If true applies image normalize
|
|
"""
|
|
super().__init__(*args, **kwargs)
|
|
if num_workers and platform.system() == "Windows":
|
|
# see: https://stackoverflow.com/a/59680818
|
|
warn(
|
|
f"You have requested num_workers={num_workers} on Windows,"
|
|
" but currently recommended is 0, so we set it for you"
|
|
)
|
|
num_workers = 0
|
|
|
|
self.dims = (1, 28, 28)
|
|
self.data_dir = data_dir
|
|
self.val_split = val_split
|
|
self.num_workers = num_workers
|
|
self.normalize = normalize
|
|
self.seed = seed
|
|
self.batch_size = batch_size
|
|
self.dataset_train = ...
|
|
self.dataset_val = ...
|
|
self.test_transforms = self.default_transforms
|
|
|
|
@property
|
|
def num_classes(self):
|
|
return 10
|
|
|
|
def prepare_data(self):
|
|
"""Saves MNIST files to `data_dir`"""
|
|
MNIST(self.data_dir, train=True, download=True)
|
|
MNIST(self.data_dir, train=False, download=True)
|
|
|
|
def setup(self, stage: Optional[str] = None):
|
|
"""Split the train and valid dataset"""
|
|
extra = dict(transform=self.default_transforms) if self.default_transforms else {}
|
|
dataset = MNIST(self.data_dir, train=True, download=False, **extra)
|
|
train_length = len(dataset)
|
|
self.dataset_train, self.dataset_val = random_split(dataset, [train_length - self.val_split, self.val_split])
|
|
|
|
def train_dataloader(self):
|
|
"""MNIST train set removes a subset to use for validation"""
|
|
loader = DataLoader(
|
|
self.dataset_train,
|
|
batch_size=self.batch_size,
|
|
shuffle=True,
|
|
num_workers=self.num_workers,
|
|
drop_last=True,
|
|
pin_memory=True,
|
|
)
|
|
return loader
|
|
|
|
def val_dataloader(self):
|
|
"""MNIST val set uses a subset of the training set for validation"""
|
|
loader = DataLoader(
|
|
self.dataset_val,
|
|
batch_size=self.batch_size,
|
|
shuffle=False,
|
|
num_workers=self.num_workers,
|
|
drop_last=True,
|
|
pin_memory=True,
|
|
)
|
|
return loader
|
|
|
|
def test_dataloader(self):
|
|
"""MNIST test set uses the test split"""
|
|
extra = dict(transform=self.test_transforms) if self.test_transforms else {}
|
|
dataset = MNIST(self.data_dir, train=False, download=False, **extra)
|
|
loader = DataLoader(
|
|
dataset,
|
|
batch_size=self.batch_size,
|
|
shuffle=False,
|
|
num_workers=self.num_workers,
|
|
drop_last=True,
|
|
pin_memory=True,
|
|
)
|
|
return loader
|
|
|
|
@property
|
|
def default_transforms(self):
|
|
if not _TORCHVISION_AVAILABLE:
|
|
return None
|
|
if self.normalize:
|
|
mnist_transforms = transform_lib.Compose([
|
|
transform_lib.ToTensor(), transform_lib.Normalize(mean=(0.5, ), std=(0.5, ))
|
|
])
|
|
else:
|
|
mnist_transforms = transform_lib.ToTensor()
|
|
|
|
return mnist_transforms
|