lightning/pytorch_lightning/trainer/evaluation_loop.py

332 lines
12 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from pytorch_lightning.trainer.supporters import PredictionCollection
from pytorch_lightning.core.step_result import Result, EvalResult
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.model_utils import is_overridden
from pytorch_lightning.utilities.distributed import rank_zero_warn
from pytorch_lightning.utilities.warning_utils import WarningCache
class EvaluationLoop(object):
def __init__(self, trainer):
self.trainer = trainer
self.testing = False
self.outputs = []
self.step_metrics = []
self.predictions = None
self.max_batches = None
self.warning_cache = WarningCache()
def on_trainer_init(self):
self.trainer.num_val_batches = []
self.trainer.num_sanity_val_batches = []
self.trainer.num_test_batches = []
self.trainer.test_dataloaders = None
self.trainer.val_dataloaders = None
self.trainer.running_sanity_check = False
self.trainer.testing = False
# when .test() is called, it sets this
self.trainer.tested_ckpt_path = None
# when true, prints test results
self.trainer.verbose_test = True
def get_evaluation_dataloaders(self, max_batches):
# select dataloaders
model = self.trainer.get_model()
# select dataloaders
if self.testing:
self.trainer.reset_test_dataloader(model)
dataloaders = self.trainer.test_dataloaders
new_max_batches = self.trainer.num_test_batches
else:
# val
in_sanity_check = self.trainer.running_sanity_check
should_reload_every_epoch = self.trainer.reload_dataloaders_every_epoch
if (self.trainer.val_dataloaders is None or should_reload_every_epoch) and not in_sanity_check:
self.trainer.reset_val_dataloader(model)
dataloaders = self.trainer.val_dataloaders
new_max_batches = self.trainer.num_val_batches
if max_batches is None:
max_batches = new_max_batches
return dataloaders, max_batches
def should_skip_evaluation(self, dataloaders, max_batches):
# skip when dataloaders aren't defined
if dataloaders is None:
return True
# enable disabling validation step with limit_val_batches = 0
should_skip = sum(max_batches) == 0
if should_skip:
return True
return False
def on_evaluation_start(self, *args, **kwargs):
if self.testing:
self.trainer.call_hook('on_test_start', *args, **kwargs)
else:
self.trainer.call_hook('on_validation_start', *args, **kwargs)
def on_evaluation_end(self, *args, **kwargs):
if self.testing:
self.trainer.call_hook('on_test_end', *args, **kwargs)
else:
self.trainer.call_hook('on_validation_end', *args, **kwargs)
def reload_evaluation_dataloaders(self):
model = self.trainer.get_model()
if self.testing:
self.trainer.reset_test_dataloader(model)
else:
self.trainer.reset_val_dataloader(model)
def is_using_eval_results(self):
outputs = self.outputs
using_eval_result = len(outputs) > 0 and len(outputs[0]) > 0 and isinstance(outputs[0][0], EvalResult)
return using_eval_result
def setup(self, model, max_batches, dataloaders):
# copy properties for forward overrides
self.trainer.model_connector.copy_trainer_model_properties(model)
# bookkeeping
self.outputs = []
self.predictions = PredictionCollection(self.trainer.global_rank, self.trainer.world_size)
# convert max_batches to list
if isinstance(max_batches, int):
max_batches = [max_batches] * len(dataloaders)
self.max_batches = max_batches
def on_evaluation_epoch_start(self, *args, **kwargs):
if self.testing:
self.trainer.call_hook('on_test_epoch_start', *args, **kwargs)
else:
self.trainer.call_hook('on_validation_epoch_start', *args, **kwargs)
def build_args(self, test_mode, batch, batch_idx, dataloader_idx):
# make dataloader_idx arg in validation_step optional
args = [batch, batch_idx]
multiple_val_loaders = (not test_mode and len(self.trainer.val_dataloaders) > 1)
multiple_test_loaders = (test_mode and len(self.trainer.test_dataloaders) > 1)
if multiple_test_loaders or multiple_val_loaders:
args.append(dataloader_idx)
return args
def evaluation_step(self, test_mode, batch, batch_idx, dataloader_idx):
# configure args
args = self.build_args(test_mode, batch, batch_idx, dataloader_idx)
# run actual test step
if self.testing:
output = self.trainer.accelerator_backend.test_step(args)
else:
output = self.trainer.accelerator_backend.validation_step(args)
# track batch size for weighted average
is_result_obj = isinstance(output, Result)
if is_result_obj:
output.track_batch_size(len(batch))
# allow only EvalResult when using structured results (from val_step)
if is_result_obj and not isinstance(output, EvalResult):
m = 'only EvalResults or dicts are allowed from validation_step'
raise MisconfigurationException(m)
return output
def evaluation_step_end(self, *args, **kwargs):
if self.testing:
output = self.trainer.call_hook('test_step_end', *args, **kwargs)
else:
output = self.trainer.call_hook('validation_step_end', *args, **kwargs)
return output
def evaluation_epoch_end(self, num_dataloaders):
using_eval_result = self.is_using_eval_results()
# call the model epoch end
eval_results = self.__run_eval_epoch_end(num_dataloaders, using_eval_result)
# enable returning anything
for r in eval_results:
if not isinstance(r, (dict, Result, torch.Tensor)):
return []
return eval_results
def log_epoch_metrics(self, eval_results, test_mode):
using_eval_result = self.is_using_eval_results()
eval_loop_results = self.trainer.logger_connector.on_evaluation_epoch_end(
eval_results,
using_eval_result,
test_mode
)
return eval_loop_results
def __run_eval_epoch_end(self, num_dataloaders, using_eval_result):
model = self.trainer.get_model()
# with a single dataloader don't pass an array
outputs = self.outputs
eval_results = outputs
if num_dataloaders == 1:
eval_results = outputs[0]
user_reduced = False
if self.testing:
if is_overridden('test_epoch_end', model=model):
model._current_fx_name = 'test_epoch_end'
if using_eval_result:
eval_results = self.__gather_epoch_end_eval_results(outputs)
eval_results = model.test_epoch_end(eval_results)
user_reduced = True
else:
if is_overridden('validation_epoch_end', model=model):
model._current_fx_name = 'validation_epoch_end'
if using_eval_result:
eval_results = self.__gather_epoch_end_eval_results(outputs)
eval_results = model.validation_epoch_end(eval_results)
user_reduced = True
# depre warning
if eval_results is not None:
step = 'testing_epoch_end' if self.testing else 'validation_epoch_end'
m = f'The {step} should not return anything as of 9.1.' \
f'to log, use self.log(...) or self.write(...) directly in the LightningModule'
self.warning_cache.warn(m)
if using_eval_result and not user_reduced:
eval_results = self.__auto_reduce_result_objs(outputs)
if not isinstance(eval_results, list):
eval_results = [eval_results]
return eval_results
def __gather_epoch_end_eval_results(self, outputs):
eval_results = []
for epoch_output in outputs:
result = epoch_output[0].__class__.gather(epoch_output)
if 'checkpoint_on' in result:
result.checkpoint_on = result.checkpoint_on.mean()
if 'early_stop_on' in result:
result.early_stop_on = result.early_stop_on.mean()
eval_results.append(result)
# with 1 dataloader don't pass in a list
if len(eval_results) == 1:
eval_results = eval_results[0]
return eval_results
def __auto_reduce_result_objs(self, outputs):
# outputs has a list of results per dataloader
eval_results = []
for dl_output in outputs:
result = dl_output[0]
result = result.__class__.reduce_on_epoch_end(dl_output)
if 'checkpoint_on' in result:
result.checkpoint_on = result.checkpoint_on.mean()
if 'early_stop_on' in result:
result.early_stop_on = result.early_stop_on.mean()
eval_results.append(result)
return eval_results
def on_evaluation_batch_start(self, *args, **kwargs):
# reset the result of the PL module
model = self.trainer.get_model()
model._results = Result()
model._current_fx_name = 'evaluation_step'
if self.testing:
self.trainer.call_hook('on_test_batch_start', *args, **kwargs)
else:
self.trainer.call_hook('on_validation_batch_start', *args, **kwargs)
def on_evaluation_batch_end(self, *args, **kwargs):
if self.testing:
self.trainer.call_hook('on_test_batch_end', *args, **kwargs)
else:
self.trainer.call_hook('on_validation_batch_end', *args, **kwargs)
def evaluation_batch_end_cleanup(self, output, batch_idx, dataloader_idx):
# Add step predictions to prediction collection to write later
if output is not None:
do_write_predictions = isinstance(output, Result) and self.testing
if do_write_predictions:
self.predictions.add(output.pop('predictions', None))
# track debug metrics
self.trainer.dev_debugger.track_eval_loss_history(self.testing, batch_idx, dataloader_idx, output)
def on_evaluation_epoch_end(self, *args, **kwargs):
# call the callback hook
if self.testing:
self.trainer.call_hook('on_test_epoch_end', *args, **kwargs)
else:
self.trainer.call_hook('on_validation_epoch_end', *args, **kwargs)
def log_evaluation_step_metrics(self, batch, batch_idx):
results = self.trainer.get_model()._results
if len(results) == 1:
return None
results.track_batch_size(len(batch))
self.__log_result_step_metrics(results, batch_idx)
return results
# TODO: deprecate at 1.0
def log_evaluation_step_metrics_legacy(self, output, batch_idx):
if self.trainer.running_sanity_check:
return
if isinstance(output, EvalResult):
self.__log_result_step_metrics(output, batch_idx)
def __log_result_step_metrics(self, output, batch_idx):
step_log_metrics = output.get_batch_log_metrics(include_forked_originals=False)
step_pbar_metrics = output.get_batch_pbar_metrics(include_forked_originals=False)
if len(step_log_metrics) > 0:
# make the metrics appear as a different line in the same graph
metrics_by_epoch = {}
for k, v in step_log_metrics.items():
metrics_by_epoch[f'{k}/epoch_{self.trainer.current_epoch}'] = v
self.trainer.logger_connector.log_metrics(metrics_by_epoch, {}, step=batch_idx)
if len(step_pbar_metrics) > 0:
self.trainer.logger_connector.add_progress_bar_metrics(step_pbar_metrics)