lightning/tests/trainer/test_config_validator.py

82 lines
2.5 KiB
Python
Executable File

import pytest
import tests.base.develop_utils as tutils
from pytorch_lightning import Trainer, LightningModule
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import EvalModelTemplate
# TODO: add matching messages
def test_wrong_train_setting(tmpdir):
"""
* Test that an error is thrown when no `train_dataloader()` is defined
* Test that an error is thrown when no `training_step()` is defined
"""
tutils.reset_seed()
hparams = EvalModelTemplate.get_default_hparams()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
with pytest.raises(MisconfigurationException):
model = EvalModelTemplate(**hparams)
model.train_dataloader = None
trainer.fit(model)
with pytest.raises(MisconfigurationException):
model = EvalModelTemplate(**hparams)
model.training_step = None
trainer.fit(model)
def test_wrong_configure_optimizers(tmpdir):
""" Test that an error is thrown when no `configure_optimizers()` is defined """
tutils.reset_seed()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
with pytest.raises(MisconfigurationException):
model = EvalModelTemplate()
model.configure_optimizers = None
trainer.fit(model)
def test_val_loop_config(tmpdir):
""""
When either val loop or val data are missing raise warning
"""
tutils.reset_seed()
hparams = EvalModelTemplate.get_default_hparams()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
# no val data has val loop
with pytest.warns(UserWarning):
model = EvalModelTemplate(**hparams)
model.validation_step = None
trainer.fit(model)
# has val loop but no val data
with pytest.warns(UserWarning):
model = EvalModelTemplate(**hparams)
model.val_dataloader = None
trainer.fit(model)
def test_test_loop_config(tmpdir):
""""
When either test loop or test data are missing
"""
hparams = EvalModelTemplate.get_default_hparams()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
# has test loop but no test data
with pytest.warns(UserWarning):
model = EvalModelTemplate(**hparams)
model.test_dataloader = None
trainer.test(model)
# has test data but no test loop
with pytest.warns(UserWarning):
model = EvalModelTemplate(**hparams)
model.test_step = None
trainer.test(model, test_dataloaders=model.dataloader(train=False))