lightning/pytorch_lightning/trainer/configuration_validator.py

83 lines
3.6 KiB
Python

from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities import rank_zero_warn
class ConfigValidator(object):
def __init__(self, trainer):
self.trainer = trainer
def enforce_datamodule_dataloader_override(self, train_dataloader, val_dataloaders, datamodule):
# If you supply a datamodule you can't supply train_dataloader or val_dataloaders
if (train_dataloader or val_dataloaders) and datamodule:
raise MisconfigurationException(
'You cannot pass train_dataloader or val_dataloaders to trainer.fit if you supply a datamodule'
)
def verify_loop_configurations(self, model: LightningModule):
r"""
Checks that the model is configured correctly before training or testing is started.
Args:
model: The model to check the configuration.
"""
if not self.trainer.testing:
self.__verify_train_loop_configuration(model)
self.__verify_eval_loop_configuration(model, 'validation')
else:
# check test loop configuration
self.__verify_eval_loop_configuration(model, 'test')
def __verify_train_loop_configuration(self, model):
# -----------------------------------
# verify model has a training step
# -----------------------------------
has_training_step = self.trainer.is_overridden('training_step', model)
if not has_training_step:
raise MisconfigurationException(
'No `training_step()` method defined. Lightning `Trainer` expects as minimum a'
' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.'
)
# -----------------------------------
# verify model has a train dataloader
# -----------------------------------
has_train_dataloader = self.trainer.is_overridden('train_dataloader', model)
if not has_train_dataloader:
raise MisconfigurationException(
'No `train_dataloader()` method defined. Lightning `Trainer` expects as minimum a'
' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.'
)
# -----------------------------------
# verify model has optimizer
# -----------------------------------
has_optimizers = self.trainer.is_overridden('configure_optimizers', model)
if not has_optimizers:
raise MisconfigurationException(
'No `configure_optimizers()` method defined. Lightning `Trainer` expects as minimum a'
' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.'
)
def __verify_eval_loop_configuration(self, model, eval_loop_name):
step_name = f'{eval_loop_name}_step'
# map the dataloader name
loader_name = f'{eval_loop_name}_dataloader'
if eval_loop_name == 'validation':
loader_name = 'val_dataloader'
has_loader = self.trainer.is_overridden(loader_name, model)
has_step = self.trainer.is_overridden(step_name, model)
if has_loader and not has_step:
rank_zero_warn(
f'you passed in a {loader_name} but have no {step_name}. Skipping {eval_loop_name} loop'
)
if has_step and not has_loader:
rank_zero_warn(
f'you defined a {step_name} but have no {loader_name}. Skipping {eval_loop_name} loop'
)