lightning/docs/source-pytorch/deploy/production_basic.rst

81 lines
2.4 KiB
ReStructuredText

#####################################
Deploy models into production (basic)
#####################################
**Audience**: All users.
----
*****************************
Load a checkpoint and predict
*****************************
The easiest way to use a model for predictions is to load the weights using **load_from_checkpoint** found in the LightningModule.
.. code-block:: python
model = LitModel.load_from_checkpoint("best_model.ckpt")
model.eval()
x = torch.randn(1, 64)
with torch.no_grad():
y_hat = model(x)
----
**************************************
Predict step with your LightningModule
**************************************
Loading a checkpoint and predicting still leaves you with a lot of boilerplate around the predict epoch. The **predict step** in the LightningModule removes this boilerplate.
.. code-block:: python
class MyModel(LightningModule):
def predict_step(self, batch, batch_idx, dataloader_idx=0):
return self(batch)
And pass in any dataloader to the Lightning Trainer:
.. code-block:: python
data_loader = DataLoader(...)
model = MyModel()
trainer = Trainer()
predictions = trainer.predict(model, data_loader)
----
********************************
Enable complicated predict logic
********************************
When you need to add complicated pre-processing or post-processing logic to your data use the predict step. For example here we do `Monte Carlo Dropout <https://arxiv.org/pdf/1506.02142.pdf>`_ for predictions:
.. code-block:: python
class LitMCdropoutModel(pl.LightningModule):
def __init__(self, model, mc_iteration):
super().__init__()
self.model = model
self.dropout = nn.Dropout()
self.mc_iteration = mc_iteration
def predict_step(self, batch, batch_idx):
# enable Monte Carlo Dropout
self.dropout.train()
# take average of `self.mc_iteration` iterations
pred = [self.dropout(self.model(x)).unsqueeze(0) for _ in range(self.mc_iteration)]
pred = torch.vstack(pred).mean(dim=0)
return pred
----
****************************
Enable distributed inference
****************************
By using the predict step in Lightning you get free distributed inference
.. code-block:: python
trainer = Trainer(devices=8, accelerator="gpu")
predictions = trainer.predict(model, data_loader)