lightning/examples/pl_domain_templates/imagenet.py

195 lines
6.9 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This example is largely adapted from https://github.com/pytorch/examples/blob/master/imagenet/main.py.
Before you can run this example, you will need to download the ImageNet dataset manually from the
`official website <http://image-net.org/download>`_ and place it into a folder `path/to/imagenet`.
Train on ImageNet with default parameters:
.. code-block: bash
python imagenet.py fit --model.data_path /path/to/imagenet
or show all options you can change:
.. code-block: bash
python imagenet.py --help
python imagenet.py fit --help
"""
import os
from typing import Optional
import torch
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import Dataset
from torchmetrics import Accuracy
from pytorch_lightning import LightningModule
from pytorch_lightning.callbacks import ModelCheckpoint, TQDMProgressBar
from pytorch_lightning.cli import LightningCLI
from pytorch_lightning.strategies import ParallelStrategy
from pytorch_lightning.utilities.model_helpers import get_torchvision_model
class ImageNetLightningModel(LightningModule):
"""
>>> ImageNetLightningModel(data_path='missing') # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
ImageNetLightningModel(
(model): ResNet(...)
)
"""
def __init__(
self,
data_path: str,
arch: str = "resnet18",
weights: Optional[str] = None,
lr: float = 0.1,
momentum: float = 0.9,
weight_decay: float = 1e-4,
batch_size: int = 256,
workers: int = 4,
):
super().__init__()
self.arch = arch
self.weights = weights
self.lr = lr
self.momentum = momentum
self.weight_decay = weight_decay
self.data_path = data_path
self.batch_size = batch_size
self.workers = workers
self.model = get_torchvision_model(self.arch, weights=self.weights)
self.train_dataset: Optional[Dataset] = None
self.eval_dataset: Optional[Dataset] = None
self.train_acc1 = Accuracy(top_k=1)
self.train_acc5 = Accuracy(top_k=5)
self.eval_acc1 = Accuracy(top_k=1)
self.eval_acc5 = Accuracy(top_k=5)
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
images, target = batch
output = self.model(images)
loss_train = F.cross_entropy(output, target)
self.log("train_loss", loss_train)
# update metrics
self.train_acc1(output, target)
self.train_acc5(output, target)
self.log("train_acc1", self.train_acc1, prog_bar=True)
self.log("train_acc5", self.train_acc5, prog_bar=True)
return loss_train
def eval_step(self, batch, batch_idx, prefix: str):
images, target = batch
output = self.model(images)
loss_val = F.cross_entropy(output, target)
self.log(f"{prefix}_loss", loss_val)
# update metrics
self.eval_acc1(output, target)
self.eval_acc5(output, target)
self.log(f"{prefix}_acc1", self.eval_acc1, prog_bar=True)
self.log(f"{prefix}_acc5", self.eval_acc5, prog_bar=True)
return loss_val
def validation_step(self, batch, batch_idx):
return self.eval_step(batch, batch_idx, "val")
def test_step(self, batch, batch_idx):
return self.eval_step(batch, batch_idx, "test")
def configure_optimizers(self):
optimizer = optim.SGD(self.parameters(), lr=self.lr, momentum=self.momentum, weight_decay=self.weight_decay)
scheduler = lr_scheduler.LambdaLR(optimizer, lambda epoch: 0.1 ** (epoch // 30))
return [optimizer], [scheduler]
def setup(self, stage: str):
if isinstance(self.trainer.strategy, ParallelStrategy):
# When using a single GPU per process and per `DistributedDataParallel`, we need to divide the batch size
# ourselves based on the total number of GPUs we have
num_processes = max(1, self.trainer.strategy.num_processes)
self.batch_size = int(self.batch_size / num_processes)
self.workers = int(self.workers / num_processes)
if stage == "fit":
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_dir = os.path.join(self.data_path, "train")
self.train_dataset = datasets.ImageFolder(
train_dir,
transforms.Compose(
[
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
),
)
# all stages will use the eval dataset
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
val_dir = os.path.join(self.data_path, "val")
self.eval_dataset = datasets.ImageFolder(
val_dir,
transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize]),
)
def train_dataloader(self):
return torch.utils.data.DataLoader(
dataset=self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.workers,
pin_memory=True,
)
def val_dataloader(self):
return torch.utils.data.DataLoader(
self.eval_dataset, batch_size=self.batch_size, num_workers=self.workers, pin_memory=True
)
def test_dataloader(self):
return self.val_dataloader()
if __name__ == "__main__":
LightningCLI(
ImageNetLightningModel,
trainer_defaults={
"max_epochs": 90,
"accelerator": "auto",
"devices": 1,
"logger": False,
"benchmark": True,
"callbacks": [
# the PyTorch example refreshes every 10 batches
TQDMProgressBar(refresh_rate=10),
# save when the validation top1 accuracy improves
ModelCheckpoint(monitor="val_acc1", mode="max"),
],
},
seed_everything_default=42,
save_config_overwrite=True,
)