268 lines
15 KiB
Plaintext
268 lines
15 KiB
Plaintext
{
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0,
|
|
"metadata": {
|
|
"accelerator": "GPU",
|
|
"colab": {
|
|
"name": "bug_report_model.ipynb",
|
|
"provenance": [],
|
|
"collapsed_sections": []
|
|
},
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.7"
|
|
}
|
|
},
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "rR4_BAUYs3Mb"
|
|
},
|
|
"source": [
|
|
"![image.png]()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "i7XbLCXGkll9"
|
|
},
|
|
"source": [
|
|
"# The Boring Model\n",
|
|
"Replicate a bug you experience, using this model.\n",
|
|
"\n",
|
|
"[Remember! we're always available for support on Slack](https://www.pytorchlightning.ai/community)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "2LODD6w9ixlT"
|
|
},
|
|
"source": [
|
|
"---\n",
|
|
"## Setup env"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"metadata": {
|
|
"id": "zK7-Gg69kMnG"
|
|
},
|
|
"source": [
|
|
"%%capture\n",
|
|
"! pip install -qU pytorch-lightning"
|
|
],
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "WvuSN5jEbY8P"
|
|
},
|
|
"source": [
|
|
"---\n",
|
|
"## Deps"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"metadata": {
|
|
"id": "w4_TYnt_keJi"
|
|
},
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"import torch\n",
|
|
"from torch.utils.data import DataLoader, Dataset\n",
|
|
"\n",
|
|
"from pytorch_lightning import LightningModule, Trainer"
|
|
],
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "XrJDukwPtUnS"
|
|
},
|
|
"source": [
|
|
"---\n",
|
|
"## Data\n",
|
|
"Random data is best for debugging. If you needs special tensor shapes or batch compositions or dataloaders, modify as needed"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"metadata": {
|
|
"id": "hvgTiaZpkvwS"
|
|
},
|
|
"source": [
|
|
"class RandomDataset(Dataset):\n",
|
|
" def __init__(self, size, num_samples):\n",
|
|
" self.len = num_samples\n",
|
|
" self.data = torch.randn(num_samples, size)\n",
|
|
"\n",
|
|
" def __getitem__(self, index):\n",
|
|
" return self.data[index]\n",
|
|
"\n",
|
|
" def __len__(self):\n",
|
|
" return self.len"
|
|
],
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"metadata": {
|
|
"id": "sxVlWjGhl02D"
|
|
},
|
|
"source": [
|
|
"num_samples = 10000"
|
|
],
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"metadata": {
|
|
"id": "V7ELesz1kVQo"
|
|
},
|
|
"source": [
|
|
"class BoringModel(LightningModule):\n",
|
|
" def __init__(self):\n",
|
|
" super().__init__()\n",
|
|
" self.layer = torch.nn.Linear(32, 2)\n",
|
|
"\n",
|
|
" def forward(self, x):\n",
|
|
" return self.layer(x)\n",
|
|
"\n",
|
|
" def training_step(self, batch, batch_idx):\n",
|
|
" loss = self(batch).sum()\n",
|
|
" self.log(\"train_loss\", loss)\n",
|
|
" return {\"loss\": loss}\n",
|
|
"\n",
|
|
" def validation_step(self, batch, batch_idx):\n",
|
|
" loss = self(batch).sum()\n",
|
|
" self.log(\"valid_loss\", loss)\n",
|
|
"\n",
|
|
" def test_step(self, batch, batch_idx):\n",
|
|
" loss = self(batch).sum()\n",
|
|
" self.log(\"test_loss\", loss)\n",
|
|
"\n",
|
|
" def configure_optimizers(self):\n",
|
|
" return torch.optim.SGD(self.layer.parameters(), lr=0.1)"
|
|
],
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "ubvW3LGSupmt"
|
|
},
|
|
"source": [
|
|
"---\n",
|
|
"## Define the test"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"metadata": {
|
|
"id": "4Dk6Ykv8lI7X"
|
|
},
|
|
"source": [
|
|
"def run():\n",
|
|
" train_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n",
|
|
" val_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n",
|
|
" test_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n",
|
|
"\n",
|
|
" model = BoringModel()\n",
|
|
" trainer = Trainer(\n",
|
|
" default_root_dir=os.getcwd(),\n",
|
|
" limit_train_batches=1,\n",
|
|
" limit_val_batches=1,\n",
|
|
" limit_test_batches=1,\n",
|
|
" num_sanity_val_steps=0,\n",
|
|
" max_epochs=1,\n",
|
|
" enable_model_summary=False,\n",
|
|
" )\n",
|
|
" trainer.fit(model, train_dataloaders=train_data, val_dataloaders=val_data)\n",
|
|
" trainer.test(model, dataloaders=test_data)"
|
|
],
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "4dPfTZVgmgxz"
|
|
},
|
|
"source": [
|
|
"---\n",
|
|
"## Run Test"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"metadata": {
|
|
"id": "AAtq1hwSmjKe"
|
|
},
|
|
"source": [
|
|
"run()"
|
|
],
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "Flyi--SpvsJN"
|
|
},
|
|
"source": [
|
|
"---\n",
|
|
"## Environment\n",
|
|
"Run this to get the environment details"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"metadata": {
|
|
"id": "0-yvGFRoaDSi"
|
|
},
|
|
"source": [
|
|
"%%capture\n",
|
|
"! wget https://raw.githubusercontent.com/Lightning-AI/lightning/master/requirements/collect_env_details.py"
|
|
],
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"metadata": {
|
|
"id": "quj4LUDgmFvj"
|
|
},
|
|
"source": [
|
|
"! python collect_env_details.py"
|
|
],
|
|
"execution_count": null,
|
|
"outputs": []
|
|
}
|
|
]
|
|
}
|