463 lines
16 KiB
Python
463 lines
16 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from unittest.mock import patch
|
|
|
|
import torch
|
|
from torch.optim import Adam, Optimizer
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.core.optimizer import LightningOptimizer
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers.boring_model import BoringModel
|
|
|
|
|
|
def test_lightning_optimizer(tmpdir):
|
|
"""
|
|
Test that optimizer are correctly wrapped by our LightningOptimizer
|
|
"""
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
# optimizer = LightningOptimizer(self.trainer, optimizer)
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
|
|
return [optimizer], [lr_scheduler]
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
max_epochs=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
groups = "{'dampening': 0, 'initial_lr': 0.1, 'lr': 0.01, 'momentum': 0, 'nesterov': False, 'weight_decay': 0}"
|
|
expected = f"LightningSGD(groups=[{groups}])"
|
|
assert trainer._lightning_optimizers[0].__repr__() == expected
|
|
|
|
|
|
def test_lightning_optimizer_from_user(tmpdir):
|
|
"""
|
|
Test that the user can use our LightningOptimizer. Not recommended.
|
|
"""
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
optimizer = LightningOptimizer(optimizer)
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
|
|
return [optimizer], [lr_scheduler]
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
max_epochs=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
groups = "{'amsgrad': False, 'betas': (0.9, 0.999), 'eps': 1e-08, 'initial_lr': 0.1, 'lr': 0.01, 'weight_decay': 0}"
|
|
expected = f"LightningAdam(groups=[{groups}])"
|
|
assert trainer._lightning_optimizers[0].__repr__() == expected
|
|
|
|
|
|
@patch("torch.optim.Adam.step", autospec=True)
|
|
@patch("torch.optim.SGD.step", autospec=True)
|
|
def test_lightning_optimizer_manual_optimization(mock_sgd_step, mock_adam_step, tmpdir):
|
|
"""
|
|
Test that the user can use our LightningOptimizer. Not recommended for now.
|
|
"""
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.automatic_optimization = False
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
(opt_1, opt_2) = self.optimizers()
|
|
assert isinstance(opt_1, LightningOptimizer)
|
|
assert isinstance(opt_2, LightningOptimizer)
|
|
|
|
output = self.layer(batch)
|
|
loss_1 = self.loss(batch, output)
|
|
self.manual_backward(loss_1, opt_1)
|
|
opt_1.step()
|
|
|
|
def closure():
|
|
output = self.layer(batch)
|
|
loss_2 = self.loss(batch, output)
|
|
self.manual_backward(loss_2, opt_2)
|
|
|
|
opt_2.step(closure=closure)
|
|
|
|
def configure_optimizers(self):
|
|
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
optimizer_1 = LightningOptimizer(optimizer_1, 4)
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
|
|
return [optimizer_1, optimizer_2], [lr_scheduler]
|
|
|
|
model = TestModel()
|
|
model.training_step_end = None
|
|
model.training_epoch_end = None
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=8,
|
|
limit_val_batches=1,
|
|
max_epochs=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert len(mock_sgd_step.mock_calls) == 2
|
|
assert len(mock_adam_step.mock_calls) == 8
|
|
|
|
|
|
@patch("torch.optim.Adam.step", autospec=True)
|
|
@patch("torch.optim.SGD.step", autospec=True)
|
|
def test_lightning_optimizer_manual_optimization_and_accumulated_gradients(mock_sgd_step, mock_adam_step, tmpdir):
|
|
"""
|
|
Test that the user can use our LightningOptimizer. Not recommended.
|
|
"""
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.automatic_optimization = False
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
(opt_1, opt_2) = self.optimizers()
|
|
assert isinstance(opt_1, LightningOptimizer)
|
|
assert isinstance(opt_2, LightningOptimizer)
|
|
|
|
output = self.layer(batch)
|
|
loss_1 = self.loss(batch, output)
|
|
self.manual_backward(loss_1, opt_1)
|
|
opt_1.step()
|
|
|
|
def closure():
|
|
output = self.layer(batch)
|
|
loss_2 = self.loss(batch, output)
|
|
self.manual_backward(loss_2, opt_2)
|
|
|
|
opt_2.step(closure=closure)
|
|
|
|
def configure_optimizers(self):
|
|
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
optimizer_1 = LightningOptimizer(optimizer_1, 4)
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
|
|
return [optimizer_1, optimizer_2], [lr_scheduler]
|
|
|
|
model = TestModel()
|
|
model.training_step_end = None
|
|
model.training_epoch_end = None
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=8,
|
|
limit_val_batches=1,
|
|
max_epochs=1,
|
|
weights_summary=None,
|
|
accumulate_grad_batches=2,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert len(mock_sgd_step.mock_calls) == 2
|
|
assert len(mock_adam_step.mock_calls) == 4
|
|
|
|
|
|
def test_state(tmpdir):
|
|
model = torch.nn.Linear(3, 4)
|
|
optimizer = torch.optim.Adam(model.parameters())
|
|
lightning_optimizer = LightningOptimizer(optimizer)
|
|
|
|
# test state
|
|
assert optimizer.state == lightning_optimizer.state
|
|
lightning_optimizer.state = optimizer.state
|
|
assert optimizer.state == lightning_optimizer.state
|
|
|
|
# test param_groups
|
|
assert optimizer.param_groups == lightning_optimizer.param_groups
|
|
lightning_optimizer.param_groups = optimizer.param_groups
|
|
assert optimizer.param_groups == lightning_optimizer.param_groups
|
|
|
|
# test defaults
|
|
assert optimizer.defaults == lightning_optimizer.defaults
|
|
lightning_optimizer.defaults = optimizer.defaults
|
|
assert optimizer.defaults == lightning_optimizer.defaults
|
|
|
|
assert isinstance(lightning_optimizer, LightningOptimizer)
|
|
assert isinstance(lightning_optimizer, Adam)
|
|
assert isinstance(lightning_optimizer, Optimizer)
|
|
|
|
lightning_dict = {}
|
|
special_attrs = [
|
|
"_accumulate_grad_batches", "_optimizer", "_optimizer_idx", "_support_closure", "_trainer", "__getstate__",
|
|
"__setstate__", "state_dict", "load_state_dict", "zero_grad", "__setstate__", "add_param_group"
|
|
]
|
|
|
|
for k, v in lightning_optimizer.__dict__.items():
|
|
if k not in special_attrs:
|
|
lightning_dict[k] = v
|
|
|
|
assert lightning_dict == optimizer.__dict__
|
|
assert optimizer.state_dict() == lightning_optimizer.state_dict()
|
|
assert optimizer.state == lightning_optimizer.state
|
|
|
|
|
|
def test_lightning_optimizer_automatic_optimization(tmpdir):
|
|
"""
|
|
Test lightning optimize works with make_optimizer_step in automatic_optimization
|
|
"""
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
output = self.layer(batch)
|
|
loss = self.loss(batch, output)
|
|
return {"loss": loss}
|
|
|
|
def training_epoch_end(self, outputs):
|
|
outputs = sum(outputs, [])
|
|
torch.stack([x["loss"] for x in outputs]).mean()
|
|
|
|
def optimizer_step(
|
|
self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_native_amp, using_lbfgs
|
|
):
|
|
|
|
assert optimizer_closure.__name__ == "train_step_and_backward_closure"
|
|
|
|
optimizer.step(closure=optimizer_closure, make_optimizer_step=batch_idx % 2 == 0)
|
|
|
|
def configure_optimizers(self):
|
|
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
optimizer_1 = LightningOptimizer(optimizer_1, 4)
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
|
|
return [optimizer_1, optimizer_2], [lr_scheduler]
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=10,
|
|
limit_val_batches=1,
|
|
max_epochs=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_lightning_optimizer_automatic_optimization_optimizer_zero_grad(tmpdir):
|
|
"""
|
|
Test lightning optimize works with optimizer_zero_grad overrides in automatic_optimization
|
|
"""
|
|
|
|
with patch("torch.optim.Adam.zero_grad") as adam_zero_grad, \
|
|
patch("torch.optim.SGD.zero_grad") as sgd_zero_grad:
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
output = self.layer(batch)
|
|
loss = self.loss(batch, output)
|
|
return {"loss": loss}
|
|
|
|
def training_epoch_end(self, outputs):
|
|
outputs = sum(outputs, [])
|
|
torch.stack([x["loss"] for x in outputs]).mean()
|
|
|
|
def optimizer_zero_grad(self, epoch: int, batch_idx: int, optimizer: Optimizer, optimizer_idx: int):
|
|
if optimizer_idx == 0:
|
|
if batch_idx % 2 == 0:
|
|
optimizer.zero_grad()
|
|
|
|
if optimizer_idx == 1:
|
|
if batch_idx % 5 == 0:
|
|
optimizer.zero_grad()
|
|
|
|
def optimizer_step(
|
|
self,
|
|
epoch,
|
|
batch_idx,
|
|
optimizer,
|
|
optimizer_idx,
|
|
optimizer_closure,
|
|
on_tpu,
|
|
using_native_amp,
|
|
using_lbfgs,
|
|
):
|
|
|
|
assert optimizer_closure.__name__ == "train_step_and_backward_closure"
|
|
|
|
optimizer.step(closure=optimizer_closure)
|
|
|
|
def configure_optimizers(self):
|
|
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
|
|
return [optimizer_1, optimizer_2], [lr_scheduler]
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=10,
|
|
limit_val_batches=1,
|
|
max_epochs=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert adam_zero_grad.call_count == 2
|
|
assert sgd_zero_grad.call_count == 5
|
|
|
|
|
|
def test_lightning_optimizer_automatic_optimization_optimizer_zero_grad_make_optimizer_step(tmpdir):
|
|
"""
|
|
Test lightning optimize works with optimizer_zero_grad overrides and make_optimizer_step in automatic_optimization
|
|
"""
|
|
|
|
try:
|
|
with patch("torch.optim.Adam.zero_grad") as adam_zero_grad, \
|
|
patch("torch.optim.SGD.zero_grad") as sgd_zero_grad:
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
output = self.layer(batch)
|
|
loss = self.loss(batch, output)
|
|
return {"loss": loss}
|
|
|
|
def training_epoch_end(self, outputs):
|
|
outputs = sum(outputs, [])
|
|
torch.stack([x["loss"] for x in outputs]).mean()
|
|
|
|
def optimizer_zero_grad(self, epoch: int, batch_idx: int, optimizer: Optimizer, optimizer_idx: int):
|
|
if optimizer_idx == 0:
|
|
if batch_idx % 2 == 0:
|
|
optimizer.zero_grad()
|
|
|
|
if optimizer_idx == 1:
|
|
if batch_idx % 5 == 0:
|
|
optimizer.zero_grad()
|
|
|
|
def optimizer_step(
|
|
self,
|
|
epoch,
|
|
batch_idx,
|
|
optimizer,
|
|
optimizer_idx,
|
|
optimizer_closure,
|
|
on_tpu,
|
|
using_native_amp,
|
|
using_lbfgs,
|
|
):
|
|
|
|
assert optimizer_closure.__name__ == "train_step_and_backward_closure"
|
|
|
|
if optimizer_idx == 0:
|
|
optimizer.step(closure=optimizer_closure, make_optimizer_step=batch_idx % 3 == 0)
|
|
return
|
|
optimizer.step(closure=optimizer_closure)
|
|
|
|
def configure_optimizers(self):
|
|
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
|
|
return [optimizer_1, optimizer_2], [lr_scheduler]
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=20,
|
|
limit_val_batches=1,
|
|
max_epochs=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert adam_zero_grad.call_count == 4
|
|
assert sgd_zero_grad.call_count == 10
|
|
|
|
except MisconfigurationException as e:
|
|
assert "When overriding LightningModule `optimizer_zero_grad`, make_optimizer_step is not allowed" in str(e)
|
|
|
|
|
|
def test_lightning_optimizer_automatic_optimization_make_optimizer_step_2(tmpdir):
|
|
"""
|
|
Test lightning optimize works with make_optimizer_step in automatic_optimization
|
|
"""
|
|
|
|
with patch("torch.optim.Adam.zero_grad") as adam_zero_grad, \
|
|
patch("torch.optim.SGD.zero_grad") as sgd_zero_grad:
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
output = self.layer(batch)
|
|
loss = self.loss(batch, output)
|
|
return {"loss": loss}
|
|
|
|
def training_epoch_end(self, outputs):
|
|
outputs = sum(outputs, [])
|
|
torch.stack([x["loss"] for x in outputs]).mean()
|
|
|
|
def optimizer_step(
|
|
self,
|
|
epoch,
|
|
batch_idx,
|
|
optimizer,
|
|
optimizer_idx,
|
|
optimizer_closure,
|
|
on_tpu,
|
|
using_native_amp,
|
|
using_lbfgs,
|
|
):
|
|
|
|
assert optimizer_closure.__name__ == "train_step_and_backward_closure"
|
|
|
|
make_optimizer_step = None
|
|
if optimizer_idx == 0:
|
|
make_optimizer_step = batch_idx % 4 == 0
|
|
optimizer.step(closure=optimizer_closure, make_optimizer_step=make_optimizer_step)
|
|
|
|
def configure_optimizers(self):
|
|
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
|
|
return [optimizer_1, optimizer_2], [lr_scheduler]
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=20,
|
|
limit_val_batches=1,
|
|
max_epochs=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert adam_zero_grad.call_count == 20
|
|
assert sgd_zero_grad.call_count == 5
|