202 lines
9.0 KiB
Python
202 lines
9.0 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from abc import ABC
|
|
from typing import List, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import optim
|
|
from torch.optim.optimizer import Optimizer
|
|
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from pytorch_lightning.core.optimizer import LightningOptimizer
|
|
from pytorch_lightning.utilities import rank_zero_warn
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
|
|
class TrainerOptimizersMixin(ABC):
|
|
|
|
def init_optimizers(self, model: LightningModule) -> Tuple[List, List, List]:
|
|
optim_conf = model.configure_optimizers()
|
|
if optim_conf is None:
|
|
rank_zero_warn(
|
|
'`LightningModule.configure_optimizers` returned `None`, this fit will run with no optimizer',
|
|
UserWarning,
|
|
)
|
|
optim_conf = _MockOptimizer()
|
|
|
|
optimizers, lr_schedulers, optimizer_frequencies = [], [], []
|
|
monitor = None
|
|
|
|
# single output, single optimizer
|
|
if isinstance(optim_conf, Optimizer):
|
|
optimizers = [optim_conf]
|
|
# two lists, optimizer + lr schedulers
|
|
elif isinstance(optim_conf, (list, tuple)) and len(optim_conf) == 2 and isinstance(optim_conf[0], list):
|
|
opt, sch = optim_conf
|
|
optimizers = opt
|
|
lr_schedulers = sch if isinstance(sch, list) else [sch]
|
|
# single dictionary
|
|
elif isinstance(optim_conf, dict):
|
|
optimizers = [optim_conf["optimizer"]]
|
|
monitor = optim_conf.get('monitor', None)
|
|
lr_schedulers = [optim_conf["lr_scheduler"]] if "lr_scheduler" in optim_conf else []
|
|
# multiple dictionaries
|
|
elif isinstance(optim_conf, (list, tuple)) and all(isinstance(d, dict) for d in optim_conf):
|
|
optimizers = [opt_dict["optimizer"] for opt_dict in optim_conf]
|
|
lr_schedulers = [opt_dict["lr_scheduler"] for opt_dict in optim_conf if "lr_scheduler" in opt_dict]
|
|
optimizer_frequencies = [
|
|
opt_dict["frequency"] for opt_dict in optim_conf if opt_dict.get("frequency", None) is not None
|
|
]
|
|
# assert that if frequencies are present, they are given for all optimizers
|
|
if optimizer_frequencies and len(optimizer_frequencies) != len(optimizers):
|
|
raise ValueError("A frequency must be given to each optimizer.")
|
|
# single list or tuple, multiple optimizer
|
|
elif isinstance(optim_conf, (list, tuple)):
|
|
optimizers = list(optim_conf)
|
|
# unknown configuration
|
|
else:
|
|
raise MisconfigurationException(
|
|
'Unknown configuration for model optimizers.'
|
|
' Output from `model.configure_optimizers()` should either be:\n'
|
|
' * `torch.optim.Optimizer`\n'
|
|
' * [`torch.optim.Optimizer`]\n'
|
|
' * ([`torch.optim.Optimizer`], [`torch.optim.lr_scheduler`])\n'
|
|
' * {"optimizer": `torch.optim.Optimizer`, (optional) "lr_scheduler": `torch.optim.lr_scheduler`}\n'
|
|
' * A list of the previously described dict format, with an optional "frequency" key (int)'
|
|
)
|
|
|
|
lr_schedulers = self.configure_schedulers(lr_schedulers, monitor=monitor)
|
|
_validate_scheduler_optimizer(optimizers, lr_schedulers)
|
|
|
|
return optimizers, lr_schedulers, optimizer_frequencies
|
|
|
|
def convert_to_lightning_optimizers(self):
|
|
|
|
def _convert_to_lightning_optimizer(trainer, optimizer):
|
|
if not isinstance(optimizer, LightningOptimizer):
|
|
optimizer = LightningOptimizer(optimizer)
|
|
optimizer._on_trainer_init(trainer)
|
|
return optimizer
|
|
|
|
self._lightning_optimizers = {
|
|
opt_idx: _convert_to_lightning_optimizer(self, opt)
|
|
for opt_idx, opt in enumerate(self.optimizers)
|
|
}
|
|
|
|
def configure_schedulers(self, schedulers: list, monitor: Optional[str] = None):
|
|
# Convert each scheduler into dict structure with relevant information
|
|
lr_schedulers = []
|
|
default_config = {
|
|
'scheduler': None,
|
|
'name': None, # no custom name
|
|
'interval': 'epoch', # after epoch is over
|
|
'frequency': 1, # every epoch/batch
|
|
'reduce_on_plateau': False, # most often not ReduceLROnPlateau scheduler
|
|
'monitor': monitor, # value to monitor for ReduceLROnPlateau
|
|
'strict': True, # enforce that the monitor exists for ReduceLROnPlateau
|
|
}
|
|
for scheduler in schedulers:
|
|
if isinstance(scheduler, dict):
|
|
# check provided keys
|
|
extra_keys = [k for k in scheduler.keys() if k not in default_config.keys()]
|
|
if extra_keys:
|
|
rank_zero_warn(f'Found unsupported keys in the lr scheduler dict: {extra_keys}', RuntimeWarning)
|
|
if 'scheduler' not in scheduler:
|
|
raise MisconfigurationException(
|
|
'The lr scheduler dict must have the key "scheduler" with its item being an lr scheduler'
|
|
)
|
|
scheduler['reduce_on_plateau'] = isinstance(
|
|
scheduler['scheduler'], optim.lr_scheduler.ReduceLROnPlateau
|
|
)
|
|
if scheduler['reduce_on_plateau'] and scheduler.get('monitor', None) is None:
|
|
raise MisconfigurationException(
|
|
'The lr scheduler dict must include a monitor when a `ReduceLROnPlateau` scheduler is used.'
|
|
' For example: {"optimizer": optimizer, "lr_scheduler":'
|
|
' {"scheduler": scheduler, "monitor": "your_loss"}}'
|
|
)
|
|
lr_schedulers.append({**default_config, **scheduler})
|
|
elif isinstance(scheduler, optim.lr_scheduler.ReduceLROnPlateau):
|
|
if monitor is None:
|
|
raise MisconfigurationException(
|
|
'`configure_optimizers` must include a monitor when a `ReduceLROnPlateau` scheduler is used.'
|
|
' For example:'
|
|
' {"optimizer": optimizer, "lr_scheduler": scheduler, "monitor": "metric_to_track"}'
|
|
)
|
|
lr_schedulers.append({
|
|
**default_config, 'scheduler': scheduler,
|
|
'reduce_on_plateau': True,
|
|
'monitor': monitor
|
|
})
|
|
elif isinstance(scheduler, optim.lr_scheduler._LRScheduler):
|
|
lr_schedulers.append({**default_config, 'scheduler': scheduler})
|
|
else:
|
|
raise ValueError(f'The provided lr scheduler "{scheduler}" is invalid')
|
|
return lr_schedulers
|
|
|
|
def reinit_scheduler_properties(self, optimizers: list, schedulers: list):
|
|
# Reinitialize optimizer.step properties added by schedulers
|
|
for scheduler in schedulers:
|
|
scheduler = scheduler['scheduler']
|
|
state = None
|
|
|
|
for optimizer in optimizers:
|
|
# check that we dont mix users optimizers and schedulers
|
|
if scheduler.optimizer == optimizer:
|
|
# Find the mro belonging to the base lr scheduler class
|
|
for i, mro in enumerate(scheduler.__class__.__mro__):
|
|
if mro in (optim.lr_scheduler._LRScheduler, optim.lr_scheduler.ReduceLROnPlateau):
|
|
state = scheduler.state_dict()
|
|
scheduler.__class__.__mro__[i].__init__(scheduler, optimizer)
|
|
scheduler.load_state_dict(state)
|
|
break
|
|
|
|
if state is not None:
|
|
break
|
|
|
|
|
|
class _MockOptimizer(Optimizer):
|
|
"""The `_MockOptimizer` will be used inplace of an optimizer in the event that `None`
|
|
is returned from `configure_optimizers`.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__([torch.zeros(1)], {})
|
|
|
|
def add_param_group(self, param_group):
|
|
pass # Do Nothing
|
|
|
|
def load_state_dict(self, state_dict):
|
|
pass # Do Nothing
|
|
|
|
def state_dict(self):
|
|
return {} # Return Empty
|
|
|
|
def step(self, closure=None):
|
|
if closure is not None:
|
|
closure()
|
|
|
|
def zero_grad(self):
|
|
pass # Do Nothing
|
|
|
|
def __repr__(self):
|
|
return 'No Optimizer'
|
|
|
|
|
|
def _validate_scheduler_optimizer(optimizers, lr_schedulers):
|
|
if any(sch['scheduler'].optimizer not in optimizers for sch in lr_schedulers):
|
|
raise MisconfigurationException(
|
|
"Some schedulers are attatched with an optimizer that wasn't returned from `configure_optimizers`."
|
|
)
|