200 lines
7.7 KiB
Python
Executable File
200 lines
7.7 KiB
Python
Executable File
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
r"""
|
|
|
|
Learning Rate Monitor
|
|
=====================
|
|
|
|
Monitor and logs learning rate for lr schedulers during training.
|
|
|
|
"""
|
|
|
|
from typing import Dict, List, Optional
|
|
|
|
from pytorch_lightning.callbacks.base import Callback
|
|
from pytorch_lightning.utilities import rank_zero_warn
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
|
|
class LearningRateMonitor(Callback):
|
|
r"""
|
|
Automatically monitor and logs learning rate for learning rate schedulers during training.
|
|
|
|
Args:
|
|
logging_interval: set to ``'epoch'`` or ``'step'`` to log ``lr`` of all optimizers
|
|
at the same interval, set to ``None`` to log at individual interval
|
|
according to the ``interval`` key of each scheduler. Defaults to ``None``.
|
|
log_momentum: option to also log the momentum values of the optimizer, if the optimizer
|
|
has the ``momentum`` or ``betas`` attribute. Defaults to ``False``.
|
|
|
|
Example::
|
|
|
|
>>> from pytorch_lightning import Trainer
|
|
>>> from pytorch_lightning.callbacks import LearningRateMonitor
|
|
>>> lr_monitor = LearningRateMonitor(logging_interval='step')
|
|
>>> trainer = Trainer(callbacks=[lr_monitor])
|
|
|
|
Logging names are automatically determined based on optimizer class name.
|
|
In case of multiple optimizers of same type, they will be named ``Adam``,
|
|
``Adam-1`` etc. If a optimizer has multiple parameter groups they will
|
|
be named ``Adam/pg1``, ``Adam/pg2`` etc. To control naming, pass in a
|
|
``name`` keyword in the construction of the learning rate schdulers
|
|
|
|
Example::
|
|
|
|
def configure_optimizer(self):
|
|
optimizer = torch.optim.Adam(...)
|
|
lr_scheduler = {
|
|
'scheduler': torch.optim.lr_scheduler.LambdaLR(optimizer, ...)
|
|
'name': 'my_logging_name'
|
|
}
|
|
return [optimizer], [lr_scheduler]
|
|
|
|
"""
|
|
|
|
def __init__(self, logging_interval: Optional[str] = None, log_momentum: bool = False):
|
|
if logging_interval not in (None, 'step', 'epoch'):
|
|
raise MisconfigurationException('logging_interval should be `step` or `epoch` or `None`.')
|
|
|
|
self.logging_interval = logging_interval
|
|
self.log_momentum = log_momentum
|
|
self.lrs = None
|
|
self.lr_sch_names = []
|
|
|
|
def on_train_start(self, trainer, *args, **kwargs):
|
|
"""
|
|
Called before training, determines unique names for all lr
|
|
schedulers in the case of multiple of the same type or in
|
|
the case of multiple parameter groups
|
|
"""
|
|
if not trainer.logger:
|
|
raise MisconfigurationException(
|
|
'Cannot use `LearningRateMonitor` callback with `Trainer` that has no logger.'
|
|
)
|
|
|
|
if not trainer.lr_schedulers:
|
|
rank_zero_warn(
|
|
'You are using `LearningRateMonitor` callback with models that'
|
|
' have no learning rate schedulers. Please see documentation'
|
|
' for `configure_optimizers` method.', RuntimeWarning
|
|
)
|
|
|
|
if self.log_momentum:
|
|
|
|
def _check_no_key(key):
|
|
return any(key not in sch['scheduler'].optimizer.defaults for sch in trainer.lr_schedulers)
|
|
|
|
if _check_no_key('momentum') and _check_no_key('betas'):
|
|
rank_zero_warn(
|
|
"You have set log_momentum=True, but some optimizers do not"
|
|
" have momentum. This will log a value 0 for the momentum.", RuntimeWarning
|
|
)
|
|
|
|
# Find names for schedulers
|
|
names = self._find_names(trainer.lr_schedulers)
|
|
|
|
# Initialize for storing values
|
|
self.lrs = {name: [] for name in names}
|
|
self.last_momentum_values = {name + "-momentum": None for name in names}
|
|
|
|
def on_train_batch_start(self, trainer, *args, **kwargs):
|
|
if not self._should_log(trainer):
|
|
return
|
|
|
|
if self.logging_interval != 'epoch':
|
|
interval = 'step' if self.logging_interval is None else 'any'
|
|
latest_stat = self._extract_stats(trainer, interval)
|
|
|
|
if latest_stat:
|
|
trainer.logger.log_metrics(latest_stat, step=trainer.global_step)
|
|
|
|
def on_train_epoch_start(self, trainer, *args, **kwargs):
|
|
if self.logging_interval != 'step':
|
|
interval = 'epoch' if self.logging_interval is None else 'any'
|
|
latest_stat = self._extract_stats(trainer, interval)
|
|
|
|
if latest_stat:
|
|
trainer.logger.log_metrics(latest_stat, step=trainer.global_step)
|
|
|
|
def _extract_stats(self, trainer, interval: str) -> Dict[str, float]:
|
|
latest_stat = {}
|
|
|
|
for name, scheduler in zip(self.lr_sch_names, trainer.lr_schedulers):
|
|
if scheduler['interval'] == interval or interval == 'any':
|
|
opt = scheduler['scheduler'].optimizer
|
|
param_groups = opt.param_groups
|
|
use_betas = 'betas' in opt.defaults
|
|
|
|
for i, pg in enumerate(param_groups):
|
|
suffix = f'/pg{i + 1}' if len(param_groups) > 1 else ''
|
|
lr = self._extract_lr(param_group=pg, name=f'{name}{suffix}')
|
|
latest_stat.update(lr)
|
|
momentum = self._extract_momentum(
|
|
param_group=pg, name=f'{name}-momentum{suffix}', use_betas=use_betas
|
|
)
|
|
latest_stat.update(momentum)
|
|
|
|
return latest_stat
|
|
|
|
def _extract_lr(self, param_group, name: str) -> Dict[str, float]:
|
|
lr = param_group.get('lr')
|
|
self.lrs[name].append(lr)
|
|
return {name: lr}
|
|
|
|
def _extract_momentum(self, param_group, name: str, use_betas: bool) -> Dict[str, float]:
|
|
if not self.log_momentum:
|
|
return {}
|
|
|
|
momentum = param_group.get('betas')[0] if use_betas else param_group.get('momentum', 0)
|
|
self.last_momentum_values[name] = momentum
|
|
return {name: momentum}
|
|
|
|
def _find_names(self, lr_schedulers) -> List[str]:
|
|
# Create uniqe names in the case we have multiple of the same learning
|
|
# rate schduler + multiple parameter groups
|
|
names = []
|
|
for scheduler in lr_schedulers:
|
|
sch = scheduler['scheduler']
|
|
if scheduler['name'] is not None:
|
|
name = scheduler['name']
|
|
else:
|
|
opt_name = 'lr-' + sch.optimizer.__class__.__name__
|
|
i, name = 1, opt_name
|
|
|
|
# Multiple schduler of the same type
|
|
while True:
|
|
if name not in names:
|
|
break
|
|
i, name = i + 1, f'{opt_name}-{i}'
|
|
|
|
# Multiple param groups for the same schduler
|
|
param_groups = sch.optimizer.param_groups
|
|
|
|
if len(param_groups) != 1:
|
|
for i, pg in enumerate(param_groups):
|
|
temp = f'{name}/pg{i + 1}'
|
|
names.append(temp)
|
|
else:
|
|
names.append(name)
|
|
|
|
self.lr_sch_names.append(name)
|
|
|
|
return names
|
|
|
|
@staticmethod
|
|
def _should_log(trainer) -> bool:
|
|
should_log = ((trainer.global_step + 1) % trainer.log_every_n_steps == 0 or trainer.should_stop)
|
|
|
|
return should_log
|