lightning/pytorch_lightning/accelerators/accelerator.py

377 lines
13 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Iterable, Optional, Union
import torch
from torch.optim import Optimizer
from pytorch_lightning.core import LightningModule
from pytorch_lightning.plugins.precision import (
ApexMixedPrecisionPlugin,
MixedPrecisionPlugin,
NativeMixedPrecisionPlugin,
PrecisionPlugin,
)
from pytorch_lightning.plugins.training_type import TrainingTypePlugin
from pytorch_lightning.plugins.training_type.horovod import HorovodPlugin
from pytorch_lightning.utilities.apply_func import move_data_to_device
from pytorch_lightning.utilities.enums import AMPType, LightningEnum
class Accelerator(object):
"""
The Accelerator Base Class.
An Accelerator is meant to deal with one type of Hardware.
Currently there are accelerators for:
- CPU
- GPU
- TPU
Each Accelerator gets two plugins upon initialization:
One to handle differences from the training routine and one to handle different precisions.
"""
def __init__(
self,
precision_plugin: PrecisionPlugin,
training_type_plugin: TrainingTypePlugin,
) -> None:
"""
Args:
precision_plugin: the plugin to handle precision-specific parts
training_type_plugin: the plugin to handle different training routines
"""
self.precision_plugin = precision_plugin
self.training_type_plugin = training_type_plugin
self.optimizers = None
self.lr_schedulers = None
self.optimizer_frequencies = None
def setup(self, trainer: "Trainer", model: LightningModule) -> None:
"""
Connects the plugins to the training process, creates optimizers
Args:
trainer: the trainer instance to connect to
model: the model to train
"""
self.connect_training_type_plugin(self.training_type_plugin, model)
self.setup_optimizers(trainer, model)
self.connect_precision_plugin(self.precision_plugin)
@property
def model(self) -> torch.nn.Module:
"""Returns the model. This can also be a wrapped LightningModule.
For retrieving the pure LightningModule use :attr:`Accelerator.lightning_module`
"""
return self.training_type_plugin.model
@model.setter
def model(self, new_model: torch.nn.Module) -> None:
self.training_type_plugin.model = new_model
@property
def lightning_module(self) -> LightningModule:
"""Returns the pure LightningModule.
To get the potentially wrapped model use :attr:`Accelerator.model`
"""
return self.training_type_plugin.lightning_module
@property
def root_device(self) -> torch.device:
return self.training_type_plugin.root_device
def teardown(self):
"""This method is called to teardown the training process.
It is the right place to release memory and free other ressources.
"""
pass
def batch_to_device(self, batch: Any, device: torch.device) -> Any:
"""Moves the batch to the correct device.
The returned batch is of the same type as the input batch, just having all tensors on the correct device.
Args:
batch: The batch of samples to move to the correct device
device: The target device
"""
model = self.lightning_module
if model is not None:
return model.transfer_batch_to_device(batch, device)
return move_data_to_device(batch, device)
def on_train_start(self):
"""Hook to do something upon the training start"""
pass
def training_step(self, args):
"""The actual training step.
Args:
args: the arguments for the models training step. Can consist of the following:
batch (:class:`~torch.Tensor` | (:class:`~torch.Tensor`, ...) | [:class:`~torch.Tensor`, ...]):
The output of your :class:`~torch.utils.data.DataLoader`. A tensor, tuple or list.
batch_idx (int): Integer displaying index of this batch
optimizer_idx (int): When using multiple optimizers, this argument will also be present.
hiddens(:class:`~torch.Tensor`): Passed in if
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.truncated_bptt_steps` > 0.
"""
batch = self.to_device(args[0])
args[0] = batch
with self.precision_plugin.train_step_context():
with self.training_type_plugin.train_step_context():
return self.training_type_plugin.training_step(*args)
def validation_step(self, args):
"""The actual validation step.
Args:
args: the arguments for the models validation step. Can consist of the following:
batch (:class:`~torch.Tensor` | (:class:`~torch.Tensor`, ...) | [:class:`~torch.Tensor`, ...]):
The output of your :class:`~torch.utils.data.DataLoader`. A tensor, tuple or list.
batch_idx (int): The index of this batch
dataloader_idx (int): The index of the dataloader that produced this batch
(only if multiple val dataloaders used)
"""
batch = self.to_device(args[0])
args[0] = batch
with self.precision_plugin.val_step_context():
with self.training_type_plugin.val_step_context():
return self.training_type_plugin.validation_step(*args)
def test_step(self, args):
"""The actual test step.
Args:
args: the arguments for the models test step. Can consist of the following:
batch (:class:`~torch.Tensor` | (:class:`~torch.Tensor`, ...) | [:class:`~torch.Tensor`, ...]):
The output of your :class:`~torch.utils.data.DataLoader`. A tensor, tuple or list.
batch_idx (int): The index of this batch.
dataloader_idx (int): The index of the dataloader that produced this batch
(only if multiple test dataloaders used).
"""
batch = self.to_device(args[0])
args[0] = batch
with self.precision_plugin.test_step_context():
with self.training_type_plugin.test_step_context():
return self.training_type_plugin.test_step(*args)
def training_step_end(self, output):
"""A hook to do something at the end of the training step
Args:
output: the output of the training step
"""
return output
def test_step_end(self, output):
"""A hook to do something at the end of the test step
Args:
output: the output of the test step
"""
return output
def validation_step_end(self, output):
"""A hook to do something at the end of the validation step
Args:
output: the output of the validation step
"""
return output
def process_dataloader(
self, dataloader: Union[Iterable, torch.utils.data.DataLoader]
) -> Union[Iterable, torch.utils.data.DataLoader]:
"""Wraps the dataloader if necessary
Args:
dataloader: iterable. Ideally of type: :class:`torch.utils.data.DataLoader`
"""
return dataloader
def backward(
self,
closure_loss: torch.Tensor,
optimizer: torch.optim.Optimizer,
opt_idx: int,
should_accumulate: bool,
*args,
**kwargs,
) -> torch.Tensor:
"""Forwards backward-calls to the precision plugin.
Args:
closure_loss: a tensor holding the loss value to backpropagate
optimizer: the optimizer to do the step later on.
opt_idx: the index of the optimizer
should_accumulate: whether to accumulate gradients
"""
output = self.precision_plugin.backward(
self.lightning_module, closure_loss, optimizer, opt_idx, should_accumulate, *args, **kwargs
)
# TODO: this is a hack, find a better solution for this (hook?)
if isinstance(self.training_type_plugin, HorovodPlugin):
optimizer.synchronize()
return output
def optimizer_step(
self,
optimizer: torch.optim.Optimizer,
current_epoch: int,
batch_idx: int,
opt_idx: int,
lambda_closure: Callable,
):
"""performs the actual optimizer step.
Args:
optimizer: the optimizer performing the step
current_epoch: current training epoch
batch_idx: index of the current batch
opt_idx: index of the current optimizer
lambda_closure: closure calculating the loss value
"""
model_ref = self.lightning_module
is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
native_amp = (
isinstance(self.precision_plugin, MixedPrecisionPlugin) and self.precision_plugin.backend == AMPType.NATIVE
)
self.precision_plugin.pre_optimizer_step(optimizer, opt_idx)
self.training_type_plugin.pre_optimizer_step(optimizer, opt_idx)
# model hook
res = model_ref.optimizer_step(
epoch=current_epoch,
batch_idx=batch_idx,
optimizer=optimizer,
optimizer_idx=opt_idx,
optimizer_closure=lambda_closure,
on_tpu=False, # TPUAccelerator class sets this as True
using_native_amp=native_amp,
using_lbfgs=is_lbfgs,
)
self.precision_plugin.post_optimizer_step(optimizer, opt_idx)
self.training_type_plugin.post_optimizer_step(optimizer, opt_idx)
return res
def optimizer_zero_grad(
self, current_epoch: int, batch_idx: int, optimizer: torch.optim.Optimizer, opt_idx: int
) -> None:
"""Zeros all model parameter's gradients"""
model_ref = self.lightning_module
model_ref.optimizer_zero_grad(current_epoch, batch_idx, optimizer, opt_idx)
def clip_gradients(self, optimizer: torch.optim.Optimizer, clip_val: Union[int, float]) -> None:
"""clips all the optimizer parameters to the given value"""
self.precision_plugin.clip_gradients(optimizer, clip_val)
def on_train_epoch_end(self, outputs) -> None:
"""Hook to do something on the end of an training epoch
Args:
outputs: the outputs of the training steps
"""
pass
def on_train_end(self) -> None:
"""Hook to do something at the end of the training"""
pass
def setup_optimizers(self, trainer: "Trainer", model: LightningModule):
"""creates optimizers and schedulers
Args:
trainer: the Trainer, these optimizers should be connected to
model: the model to be optimized by the created optimizers
"""
if trainer.testing is True:
return
optimizers, lr_schedulers, optimizer_frequencies = trainer.init_optimizers(model)
self.optimizers = optimizers
self.lr_schedulers = lr_schedulers
self.optimizer_frequencies = optimizer_frequencies
def connect_training_type_plugin(self, plugin: TrainingTypePlugin, model: LightningModule) -> None:
"""Attaches the training type plugin to the accelerator.
Also transfers ownership of the model to this plugin
"""
plugin.connect(model)
def connect_precision_plugin(self, plugin: PrecisionPlugin):
"""Attaches the precision plugin to the accelerator"""
model, optimizers, schedulers = plugin.connect(self.model, self.optimizers, self.lr_schedulers)
self.model = model
self.optimizers = optimizers
self.schedulers = schedulers
def to_device(self, batch: Any) -> Any:
"""Pushes the batch to the root device"""
return self.batch_to_device(batch, self.root_device)
@property
def amp_backend(self) -> Optional[LightningEnum]:
if isinstance(self.precision_plugin, ApexMixedPrecisionPlugin):
return AMPType.APEX
elif isinstance(self.precision_plugin, NativeMixedPrecisionPlugin):
return AMPType.NATIVE
return None
@property
def precision(self) -> int:
return self.precision_plugin.precision
@property
def scaler(self):
if hasattr(self.precision_plugin, "scaler"):
return self.precision_plugin.scaler
return None
@property
def rpc_enabled(self) -> bool:
return self.training_type_plugin.rpc_enabled
def optimizer_state(self, optimizer: Optimizer) -> dict:
"""
Returns state of an optimizer. Allows for syncing/collating optimizer state from processes in custom
plugins.
"""
if self.training_type_plugin and hasattr(self.training_type_plugin, "optimizer_state"):
return self.training_type_plugin.optimizer_state(optimizer)
return optimizer.state_dict()
def on_save(self, checkpoint):
return checkpoint