lightning/dockers
Jirka Borovec c2c82dad62
CI: Azure (#5882)
* add base Azure pipeline

* skip
2021-02-10 04:43:26 -05:00
..
base-conda create new Conda images (#5877) 2021-02-09 15:30:48 +00:00
base-cuda CI: Azure (#5882) 2021-02-10 04:43:26 -05:00
base-xla try fix: Docker with Conda & PT 1.8 (#5842) 2021-02-09 08:22:35 +00:00
nvidia add nvidia docker image (#5668) 2021-01-29 11:01:03 -05:00
release try to update failing dockers (#5611) 2021-01-25 17:10:56 -05:00
tpu-tests resolve conflits 2021-02-05 21:43:10 +01:00
README.md try fix: Docker with Conda & PT 1.8 (#5842) 2021-02-09 08:22:35 +00:00

README.md

Docker images

Builds images form attached Dockerfiles

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch-lightning:latest -f dockers/conda/Dockerfile .

or with specific arguments

git clone <git-repository>
docker image build \
    -t pytorch-lightning:py3.8-pt1.6 \
    -f dockers/base-cuda/Dockerfile \
    --build-arg PYTHON_VERSION=3.8 \
    --build-arg PYTORCH_VERSION=1.6 \
    .

or nightly version from Coda

git clone <git-repository>
docker image build \
    -t pytorch-lightning:py3.7-pt1.8 \
    -f dockers/base-conda/Dockerfile \
    --build-arg PYTHON_VERSION=3.7 \
    --build-arg PYTORCH_VERSION=1.8 \
    .

To run your docker use

docker image list
docker run --rm -it pytorch-lightning:latest bash

and if you do not need it anymore, just clean it:

docker image list
docker image rm pytorch-lightning:latest

Run docker image with GPUs

To run docker image with access to you GPUs you need to install

# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker

and later run the docker image with --gpus all so for example

docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.7-torch1.6