125 lines
4.7 KiB
Python
125 lines
4.7 KiB
Python
"""Test deprecated functionality which will be removed in vX.Y.Z"""
|
|
|
|
from pytorch_lightning import Trainer
|
|
|
|
import tests.base.utils as tutils
|
|
from tests.base import TestModelBase, LightTrainDataloader, LightEmptyTestStep
|
|
|
|
|
|
def test_tbd_remove_in_v0_8_0_module_imports():
|
|
from pytorch_lightning.logging.comet_logger import CometLogger # noqa: F811
|
|
from pytorch_lightning.logging.mlflow_logger import MLFlowLogger # noqa: F811
|
|
from pytorch_lightning.logging.test_tube_logger import TestTubeLogger # noqa: F811
|
|
|
|
from pytorch_lightning.pt_overrides.override_data_parallel import ( # noqa: F811
|
|
LightningDataParallel, LightningDistributedDataParallel)
|
|
from pytorch_lightning.overrides.override_data_parallel import ( # noqa: F811
|
|
LightningDataParallel, LightningDistributedDataParallel)
|
|
|
|
from pytorch_lightning.core.model_saving import ModelIO # noqa: F811
|
|
from pytorch_lightning.core.root_module import LightningModule # noqa: F811
|
|
|
|
from pytorch_lightning.root_module.decorators import data_loader # noqa: F811
|
|
from pytorch_lightning.root_module.grads import GradInformation # noqa: F811
|
|
from pytorch_lightning.root_module.hooks import ModelHooks # noqa: F811
|
|
from pytorch_lightning.root_module.memory import ModelSummary # noqa: F811
|
|
from pytorch_lightning.root_module.model_saving import ModelIO # noqa: F811
|
|
from pytorch_lightning.root_module.root_module import LightningModule # noqa: F811
|
|
|
|
|
|
def test_tbd_remove_in_v0_8_0_trainer():
|
|
mapping_old_new = {
|
|
'gradient_clip': 'gradient_clip_val',
|
|
'nb_gpu_nodes': 'num_nodes',
|
|
'max_nb_epochs': 'max_epochs',
|
|
'min_nb_epochs': 'min_epochs',
|
|
'nb_sanity_val_steps': 'num_sanity_val_steps',
|
|
}
|
|
# skip 0 since it may be interested as False
|
|
kwargs = {k: (i + 1) for i, k in enumerate(mapping_old_new)}
|
|
|
|
trainer = Trainer(**kwargs)
|
|
|
|
for attr_old in mapping_old_new:
|
|
attr_new = mapping_old_new[attr_old]
|
|
assert kwargs[attr_old] == getattr(trainer, attr_old), \
|
|
'Missing deprecated attribute "%s"' % attr_old
|
|
assert kwargs[attr_old] == getattr(trainer, attr_new), \
|
|
'Wrongly passed deprecated argument "%s" to attribute "%s"' % (attr_old, attr_new)
|
|
|
|
|
|
def test_tbd_remove_in_v0_9_0_module_imports():
|
|
from pytorch_lightning.core.decorators import data_loader # noqa: F811
|
|
|
|
from pytorch_lightning.logging.comet import CometLogger # noqa: F402
|
|
from pytorch_lightning.logging.mlflow import MLFlowLogger # noqa: F402
|
|
from pytorch_lightning.logging.neptune import NeptuneLogger # noqa: F402
|
|
from pytorch_lightning.logging.test_tube import TestTubeLogger # noqa: F402
|
|
from pytorch_lightning.logging.wandb import WandbLogger # noqa: F402
|
|
|
|
from pytorch_lightning.profiler import SimpleProfiler, AdvancedProfiler # noqa: F402
|
|
|
|
|
|
class ModelVer0_6(LightTrainDataloader, LightEmptyTestStep, TestModelBase):
|
|
|
|
# todo: this shall not be needed while evaluate asks for dataloader explicitly
|
|
def val_dataloader(self):
|
|
return self._dataloader(train=False)
|
|
|
|
def validation_step(self, batch, batch_idx, *args, **kwargs):
|
|
return {'val_loss': 0.6}
|
|
|
|
def validation_end(self, outputs):
|
|
return {'val_loss': 0.6}
|
|
|
|
def test_dataloader(self):
|
|
return self._dataloader(train=False)
|
|
|
|
def test_end(self, outputs):
|
|
return {'test_loss': 0.6}
|
|
|
|
|
|
class ModelVer0_7(LightTrainDataloader, LightEmptyTestStep, TestModelBase):
|
|
|
|
# todo: this shall not be needed while evaluate asks for dataloader explicitly
|
|
def val_dataloader(self):
|
|
return self._dataloader(train=False)
|
|
|
|
def validation_step(self, batch, batch_idx, *args, **kwargs):
|
|
return {'val_loss': 0.7}
|
|
|
|
def validation_end(self, outputs):
|
|
return {'val_loss': 0.7}
|
|
|
|
def test_dataloader(self):
|
|
return self._dataloader(train=False)
|
|
|
|
def test_end(self, outputs):
|
|
return {'test_loss': 0.7}
|
|
|
|
|
|
def test_tbd_remove_in_v1_0_0_model_hooks():
|
|
hparams = tutils.get_default_hparams()
|
|
|
|
model = ModelVer0_6(hparams)
|
|
|
|
trainer = Trainer(logger=False)
|
|
trainer.test(model)
|
|
assert trainer.callback_metrics == {'test_loss': 0.6}
|
|
|
|
trainer = Trainer(logger=False)
|
|
# TODO: why `dataloder` is required if it is not used
|
|
result = trainer._evaluate(model, dataloaders=[[None]], max_batches=1)
|
|
assert result == {'val_loss': 0.6}
|
|
|
|
model = ModelVer0_7(hparams)
|
|
|
|
trainer = Trainer(logger=False)
|
|
trainer.test(model)
|
|
assert trainer.callback_metrics == {'test_loss': 0.7}
|
|
|
|
trainer = Trainer(logger=False)
|
|
# TODO: why `dataloder` is required if it is not used
|
|
result = trainer._evaluate(model, dataloaders=[[None]], max_batches=1)
|
|
assert result == {'val_loss': 0.7}
|