124 lines
4.3 KiB
Python
124 lines
4.3 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import math
|
|
from typing import Any, Callable, Generator, Sequence, Tuple, Union
|
|
|
|
import torch
|
|
from torch.nn import Module
|
|
from torch.optim import Optimizer
|
|
|
|
from pytorch_lightning.core import LightningModule
|
|
from pytorch_lightning.plugins.base_plugin import Plugin
|
|
|
|
|
|
class PrecisionPlugin(Plugin):
|
|
""" Plugin handling the precision-specific parts of the training.
|
|
The static classattributes EPSILON and precision must be overwritten in child-classes and their
|
|
default values reflect fp32 training.
|
|
"""
|
|
EPSILON = 1e-6
|
|
precision = 32
|
|
|
|
def master_params(self, optimizer: Optimizer) -> Generator[torch.Tensor, None, None]:
|
|
"""The master params of the model. Returns the plain model params here.
|
|
Maybe different in other precision plugins.
|
|
|
|
"""
|
|
for group in optimizer.param_groups:
|
|
for p in group["params"]:
|
|
yield p
|
|
|
|
def connect(self, model: Module, optimizers: Sequence,
|
|
lr_schedulers: Sequence) -> Tuple[Module, Sequence, Sequence]:
|
|
"""Connects this plugin to the accelerator and the training process"""
|
|
return model, optimizers, lr_schedulers
|
|
|
|
def backward(
|
|
self,
|
|
model: LightningModule,
|
|
closure_loss: torch.Tensor,
|
|
optimizer: Optimizer,
|
|
opt_idx: int,
|
|
should_accumulate: bool,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> torch.Tensor:
|
|
"""performs the actual backpropagation
|
|
|
|
Args:
|
|
model: the model to be optimized
|
|
closure_loss: the loss value obtained from the closure
|
|
optimizer: the optimizer to perform the step lateron
|
|
opt_idx: the optimizer's index
|
|
should_accumulate: whether to accumulate gradients or not
|
|
|
|
"""
|
|
automatic_optimization = model.automatic_optimization
|
|
|
|
# do backward pass
|
|
if automatic_optimization:
|
|
model.backward(closure_loss, optimizer, opt_idx)
|
|
else:
|
|
closure_loss.backward(*args, **kwargs)
|
|
|
|
# once backward has been applied, release graph
|
|
closure_loss = closure_loss.detach()
|
|
|
|
return closure_loss
|
|
|
|
def pre_optimizer_step(
|
|
self, pl_module: LightningModule, optimizer: Optimizer, optimizer_idx: int, closure: Callable, **kwargs
|
|
) -> bool:
|
|
"""Hook to do something before each optimizer step."""
|
|
return True
|
|
|
|
def post_optimizer_step(self, optimizer: Optimizer, optimizer_idx: int) -> None:
|
|
"""Hook to do something after each optimizer step."""
|
|
|
|
def clip_gradients(self, optimizer: Optimizer, clip_val: Union[int, float], norm_type: float = float(2.0)) -> None:
|
|
"""Clips the gradients to a specific value"""
|
|
# TODO: separate TPU case from here
|
|
if clip_val is None:
|
|
return
|
|
|
|
grad_clip_val = float(clip_val)
|
|
|
|
if grad_clip_val <= 0:
|
|
return
|
|
|
|
parameters = list(self.master_params(optimizer))
|
|
|
|
max_norm = grad_clip_val
|
|
|
|
if isinstance(parameters, torch.Tensor):
|
|
parameters = [parameters]
|
|
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
|
|
|
device = parameters[0].device
|
|
|
|
if norm_type == math.inf:
|
|
total_norm = max(p.grad.data.abs().max() for p in parameters)
|
|
else:
|
|
out = torch.empty(len(parameters), device=device)
|
|
for i, p in enumerate(parameters):
|
|
torch.norm(p.grad.data.to(device), norm_type, out=out[i])
|
|
total_norm = torch.norm(out, norm_type)
|
|
|
|
eps = self.EPSILON
|
|
|
|
clip_coef = torch.tensor(max_norm, device=device) / (total_norm + eps)
|
|
clip_coef = torch.min(clip_coef, torch.ones_like(clip_coef))
|
|
for p in parameters:
|
|
p.grad.data.mul_(clip_coef.to(p.grad.data.device))
|