140 lines
5.6 KiB
Docker
140 lines
5.6 KiB
Docker
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# Existing images:
|
|
# --build-arg PYTHON_VERSION=3.7 --build-arg PYTORCH_VERSION=1.8
|
|
# --build-arg PYTHON_VERSION=3.7 --build-arg PYTORCH_VERSION=1.6
|
|
|
|
ARG CUDA_VERSION=11.1
|
|
|
|
#FROM ubuntu:20.04
|
|
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu18.04
|
|
|
|
ARG PYTHON_VERSION=3.8
|
|
ARG CONDA_VERSION=4.9.2
|
|
|
|
SHELL ["/bin/bash", "-c"]
|
|
# https://techoverflow.net/2019/05/18/how-to-fix-configuring-tzdata-interactive-input-when-building-docker-images/
|
|
ENV \
|
|
PATH="$PATH:/root/.local/bin" \
|
|
DEBIAN_FRONTEND=noninteractive \
|
|
TZ=Europe/Prague \
|
|
# CUDA_TOOLKIT_ROOT_DIR="/usr/local/cuda" \
|
|
MKL_THREADING_LAYER=GNU
|
|
|
|
RUN apt-get update -qq --fix-missing && \
|
|
apt-get install -y --no-install-recommends \
|
|
build-essential \
|
|
cmake \
|
|
git \
|
|
wget \
|
|
curl \
|
|
unzip \
|
|
ca-certificates \
|
|
libopenmpi-dev \
|
|
&& \
|
|
|
|
# Install conda and python.
|
|
# NOTE new Conda does not forward the exit status... https://github.com/conda/conda/issues/8385
|
|
curl -o ~/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-py38_${CONDA_VERSION}-Linux-x86_64.sh && \
|
|
chmod +x ~/miniconda.sh && \
|
|
~/miniconda.sh -b && \
|
|
rm ~/miniconda.sh && \
|
|
|
|
# Cleaning
|
|
apt-get autoremove -y && \
|
|
apt-get clean && \
|
|
rm -rf /root/.cache && \
|
|
rm -rf /var/lib/apt/lists/*
|
|
|
|
ENV \
|
|
PATH="/root/miniconda3/bin:$PATH" \
|
|
LD_LIBRARY_PATH="/root/miniconda3/lib:$LD_LIBRARY_PATH" \
|
|
CUDA_TOOLKIT_ROOT_DIR="/usr/local/cuda" \
|
|
MKL_THREADING_LAYER=GNU \
|
|
MAKEFLAGS="-j$(nproc)" \
|
|
# MAKEFLAGS="-j1" \
|
|
TORCH_CUDA_ARCH_LIST="3.7;5.0;6.0;7.0;7.5" \
|
|
CONDA_ENV=lightning
|
|
|
|
COPY environment.yml environment.yml
|
|
|
|
ARG PYTORCH_VERSION=1.6
|
|
|
|
# conda init
|
|
RUN conda update -n base -c defaults conda && \
|
|
conda create -y --name $CONDA_ENV python=${PYTHON_VERSION} pytorch=${PYTORCH_VERSION} cudatoolkit=${CUDA_VERSION} -c nvidia -c pytorch -c pytorch-test -c pytorch-nightly && \
|
|
conda init bash && \
|
|
# NOTE: this requires that the channel is presented in the yaml before packages
|
|
# replace channel to nigtly if needed, fix PT version and remove Horovod as it will be installed later
|
|
python -c "import re ; fname = 'environment.yml' ; req = re.sub(r'- python[>=]+[\d\.]+', '# - python=${PYTHON_VERSION}', open(fname).read()) ; open(fname, 'w').write(req)" && \
|
|
python -c "import re ; fname = 'environment.yml' ; req = re.sub(r'- pytorch[>=]+[\d\.]+', '# - pytorch=${PYTORCH_VERSION}', open(fname).read()) ; open(fname, 'w').write(req)" && \
|
|
cat environment.yml && \
|
|
conda env update --name $CONDA_ENV --file environment.yml && \
|
|
conda clean -ya && \
|
|
rm environment.yml
|
|
|
|
ENV \
|
|
PATH=/root/miniconda3/envs/${CONDA_ENV}/bin:$PATH \
|
|
LD_LIBRARY_PATH="/root/miniconda3/envs/${CONDA_ENV}/lib:$LD_LIBRARY_PATH" \
|
|
# if you want this environment to be the default o \ne, uncomment the following line:
|
|
CONDA_DEFAULT_ENV=${CONDA_ENV} \
|
|
HOROVOD_CUDA_HOME=$CUDA_TOOLKIT_ROOT_DIR \
|
|
HOROVOD_BUILD_CUDA_CC_LIST=$TORCH_CUDA_ARCH_LIST \
|
|
HOROVOD_GPU_OPERATIONS=NCCL \
|
|
HOROVOD_WITH_PYTORCH=1 \
|
|
HOROVOD_WITHOUT_TENSORFLOW=1 \
|
|
HOROVOD_WITHOUT_MXNET=1 \
|
|
HOROVOD_WITH_GLOO=1 \
|
|
HOROVOD_WITHOUT_MPI=1
|
|
|
|
COPY ./requirements/extra.txt requirements-extra.txt
|
|
COPY ./requirements/examples.txt requirements-examples.txt
|
|
COPY ./requirements/test.txt requirements-test.txt
|
|
COPY ./requirements/adjust_versions.py requirements_adjust_versions.py
|
|
|
|
RUN \
|
|
pip list | grep torch && \
|
|
python -c "import torch; print(torch.__version__)" && \
|
|
python requirements_adjust_versions.py requirements-extra.txt && \
|
|
python requirements_adjust_versions.py requirements-examples.txt && \
|
|
# Install remaining requirements
|
|
pip install -r requirements-extra.txt --no-cache-dir && \
|
|
pip install -r requirements-examples.txt --no-cache-dir --find-links https://download.pytorch.org/whl/nightly/torch_nightly.html && \
|
|
pip install -r requirements-test.txt --no-cache-dir && \
|
|
rm requirements*
|
|
|
|
RUN \
|
|
CUDA_VERSION_MAJOR=$(python -c "import torch ; print(torch.version.cuda.split('.')[0])") && \
|
|
py_ver=$(python -c "print(int('$PYTHON_VERSION'.split('.') >= '3.9'.split('.')))") && \
|
|
# install DALI, needed for examples
|
|
# todo: waiting for 1.4 - https://github.com/NVIDIA/DALI/issues/3144#issuecomment-877386691
|
|
if [ $py_ver -eq "0" ]; then \
|
|
pip install --extra-index-url https://developer.download.nvidia.com/compute/redist "nvidia-dali-cuda${CUDA_VERSION_MAJOR}0>1.0" ; \
|
|
python -c 'from nvidia.dali.pipeline import Pipeline' ; \
|
|
fi
|
|
|
|
RUN \
|
|
# install NVIDIA apex
|
|
pip install --no-cache-dir --global-option="--cuda_ext" https://github.com/NVIDIA/apex/archive/refs/heads/master.zip && \
|
|
python -c "from apex import amp"
|
|
|
|
RUN \
|
|
# Show what we have
|
|
pip --version && \
|
|
conda info && \
|
|
pip list && \
|
|
python -c "import sys; ver = sys.version_info ; assert f'{ver.major}.{ver.minor}' == '$PYTHON_VERSION', ver" && \
|
|
python -c "from torch import __version__ as ver; assert '.'.join(ver.split('.')[:2]) == '$PYTORCH_VERSION', ver"
|