lightning/tests/tests_app/core/scripts/registry.py

104 lines
3.3 KiB
Python

from lightning_app.utilities.imports import _is_pytorch_lightning_available
if _is_pytorch_lightning_available():
import torch
from torch.utils.data import DataLoader, Dataset
from pytorch_lightning import LightningDataModule, LightningModule
from pytorch_lightning.cli import LightningCLI
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
class BoringDataModule(LightningDataModule):
def __init__(self, root_folder: str = "./", batch_size: int = 32):
super().__init__()
def train_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def val_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def test_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def predict_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
class BoringDataModule2(LightningDataModule):
def __init__(self, root_folder: str = "./", batch_size: int = 32, num_workers: int = 6):
super().__init__()
def train_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def val_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def test_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def predict_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
class BoringModel(LightningModule):
def __init__(self, hidden_size: int = 16):
super().__init__()
self.layer = torch.nn.Linear(32, 2)
def forward(self, x):
return self.layer(x)
def training_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("train_loss", loss)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("valid_loss", loss)
def test_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("test_loss", loss)
def configure_optimizers(self):
return torch.optim.SGD(self.layer.parameters(), lr=0.1)
class BoringModel2(LightningModule):
def __init__(self, hidden_size: int = 16, batch_norm: bool = False):
super().__init__()
self.layer = torch.nn.Linear(32, 2)
def forward(self, x):
return self.layer(x)
def training_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("train_loss", loss)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("valid_loss", loss)
def test_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("test_loss", loss)
def configure_optimizers(self):
return torch.optim.SGD(self.layer.parameters(), lr=0.1)
if __name__ == "__main__":
LightningCLI()