lightning/examples/fabric/kfold_cv/train_fabric.py

195 lines
7.2 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from os import path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as T
from sklearn import model_selection
from torch.utils.data import DataLoader, SubsetRandomSampler
from torchmetrics.classification import Accuracy
from torchvision.datasets import MNIST
from lightning.fabric import Fabric # import Fabric
from lightning.fabric import seed_everything
DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "..", "Datasets")
class Net(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train_dataloader(model, data_loader, optimizer, fabric, epoch, hparams, fold):
# TRAINING LOOP
model.train()
for batch_idx, (data, target) in enumerate(data_loader):
# NOTE: no need to call `.to(device)` on the data, target
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
fabric.backward(loss) # instead of loss.backward()
optimizer.step()
if (batch_idx == 0) or ((batch_idx + 1) % hparams.log_interval == 0):
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(data_loader.dataset),
100.0 * batch_idx / len(data_loader),
loss.item(),
)
)
if hparams.dry_run:
break
def validate_dataloader(model, data_loader, fabric, hparams, fold, acc_metric):
model.eval()
loss = 0
with torch.no_grad():
for data, target in data_loader:
# NOTE: no need to call `.to(device)` on the data, target
output = model(data)
loss += F.nll_loss(output, target, reduction="sum").item()
# Accuracy with torchmetrics
acc_metric.update(output, target)
if hparams.dry_run:
break
# all_gather is used to aggregated the value across processes
loss = fabric.all_gather(loss).sum() / len(data_loader.dataset)
# compute acc
acc = acc_metric.compute() * 100
print(f"\nFor fold: {fold} Validation set: Average loss: {loss:.4f}, Accuracy: ({acc:.0f}%)\n")
return acc
def run(hparams):
# Create the Lightning Fabric object. The parameters like accelerator, strategy, devices etc. will be proided
# by the command line. See all options: `lightning run model --help`
fabric = Fabric()
seed_everything(hparams.seed) # instead of torch.manual_seed(...)
transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
# Let rank 0 download the data first, then everyone will load MNIST
with fabric.rank_zero_first():
dataset = MNIST(DATASETS_PATH, train=True, transform=transform)
# Loop over different folds (shuffle = False by default so reproducible)
folds = hparams.folds
kfold = model_selection.KFold(n_splits=folds)
# initialize n_splits models and optimizers
models = [Net() for _ in range(kfold.n_splits)]
optimizers = [optim.Adadelta(model.parameters(), lr=hparams.lr) for model in models]
# fabric setup for models and optimizers
for i in range(kfold.n_splits):
models[i], optimizers[i] = fabric.setup(models[i], optimizers[i])
# Accuracy using torchmetrics
acc_metric = Accuracy(task="multiclass", num_classes=10).to(fabric.device)
# loop over epochs
for epoch in range(1, hparams.epochs + 1):
# loop over folds
epoch_acc = 0
for fold, (train_ids, val_ids) in enumerate(kfold.split(dataset)):
print(f"Working on fold {fold}")
# initialize dataloaders based on folds
batch_size = hparams.batch_size
train_loader = DataLoader(dataset, batch_size=batch_size, sampler=SubsetRandomSampler(train_ids))
val_loader = DataLoader(dataset, batch_size=batch_size, sampler=SubsetRandomSampler(val_ids))
# get model and optimizer for the current fold
model, optimizer = models[fold], optimizers[fold]
# train and validate
train_dataloader(model, train_loader, optimizer, fabric, epoch, hparams, fold)
epoch_acc += validate_dataloader(model, val_loader, fabric, hparams, fold, acc_metric)
acc_metric.reset()
# log epoch metrics
print(f"Epoch {epoch} - Average acc: {epoch_acc / kfold.n_splits}")
if hparams.dry_run:
break
# When using distributed training, use `fabric.save`
# to ensure the current process is allowed to save a checkpoint
if hparams.save_model:
fabric.save(model.state_dict(), "mnist_cnn.pt")
if __name__ == "__main__":
# Arguments can be passed in through the CLI as normal and will be parsed here
# Example:
# lightning run model image_classifier.py accelerator=cuda --epochs=3
parser = argparse.ArgumentParser(description="Fabric MNIST K-Fold Cross Validation Example")
parser.add_argument(
"--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)"
)
parser.add_argument("--epochs", type=int, default=14, metavar="N", help="number of epochs to train (default: 14)")
parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)")
parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)")
parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass")
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
parser.add_argument(
"--log-interval",
type=int,
default=10,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument("--folds", type=int, default=5, help="number of folds for k-fold cross validation")
parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model")
hparams = parser.parse_args()
run(hparams)