lightning/docs/source/extensions/callbacks.rst

472 lines
12 KiB
ReStructuredText

.. testsetup:: *
from pytorch_lightning.trainer.trainer import Trainer
from pytorch_lightning.callbacks.base import Callback
.. role:: hidden
:class: hidden-section
.. _callbacks:
Callback
========
.. raw:: html
<video width="100%" max-width="400px" controls
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/callbacks.jpg"
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/callbacks.mp4"></video>
|
A callback is a self-contained program that can be reused across projects.
Lightning has a callback system to execute them when needed. Callbacks should capture NON-ESSENTIAL
logic that is NOT required for your :doc:`lightning module <../common/lightning_module>` to run.
Here's the flow of how the callback hooks are executed:
.. raw:: html
<video width="100%" max-width="400px" controls autoplay muted playsinline src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/pt_callbacks_mov.m4v"></video>
An overall Lightning system should have:
1. Trainer for all engineering
2. LightningModule for all research code.
3. Callbacks for non-essential code.
|
Example:
.. testcode::
from pytorch_lightning.callbacks import Callback
class MyPrintingCallback(Callback):
def on_train_start(self, trainer, pl_module):
print("Training is starting")
def on_train_end(self, trainer, pl_module):
print("Training is ending")
trainer = Trainer(callbacks=[MyPrintingCallback()])
We successfully extended functionality without polluting our super clean
:doc:`lightning module <../common/lightning_module>` research code.
-----------
Examples
--------
You can do pretty much anything with callbacks.
- `Add a MLP to fine-tune self-supervised networks <https://lightning-bolts.readthedocs.io/en/stable/deprecated/callbacks/self_supervised.html#sslonlineevaluator>`_.
- `Find how to modify an image input to trick the classification result <https://lightning-bolts.readthedocs.io/en/stable/deprecated/callbacks/vision.html#confused-logit>`_.
- `Interpolate the latent space of any variational model <https://lightning-bolts.readthedocs.io/en/stable/deprecated/callbacks/variational.html#latent-dim-interpolator>`_.
- `Log images to Tensorboard for any model <https://lightning-bolts.readthedocs.io/en/stable/deprecated/callbacks/vision.html#tensorboard-image-generator>`_.
--------------
Built-in Callbacks
------------------
Lightning has a few built-in callbacks.
.. note::
For a richer collection of callbacks, check out our
`bolts library <https://lightning-bolts.readthedocs.io/en/stable/index.html>`_.
.. currentmodule:: pytorch_lightning.callbacks
.. autosummary::
:nosignatures:
:template: classtemplate.rst
BackboneFinetuning
BaseFinetuning
BasePredictionWriter
Callback
DeviceStatsMonitor
EarlyStopping
GPUStatsMonitor
GradientAccumulationScheduler
LambdaCallback
LearningRateMonitor
ModelCheckpoint
ModelPruning
ModelSummary
ProgressBarBase
QuantizationAwareTraining
RichModelSummary
RichProgressBar
StochasticWeightAveraging
Timer
TQDMProgressBar
XLAStatsMonitor
----------
.. _Persisting Callback State:
Persisting State
----------------
Some callbacks require internal state in order to function properly. You can optionally
choose to persist your callback's state as part of model checkpoint files using
:meth:`~pytorch_lightning.callbacks.Callback.state_dict` and :meth:`~pytorch_lightning.callbacks.Callback.load_state_dict`.
Note that the returned state must be able to be pickled.
When your callback is meant to be used only as a singleton callback then implementing the above two hooks is enough
to persist state effectively. However, if passing multiple instances of the callback to the Trainer is supported, then
the callback must define a :attr:`~pytorch_lightning.callbacks.Callback.state_key` property in order for Lightning
to be able to distinguish the different states when loading the callback state. This concept is best illustrated by
the following example.
.. testcode::
class Counter(Callback):
def __init__(self, what="epochs", verbose=True):
self.what = what
self.verbose = verbose
self.state = {"epochs": 0, "batches": 0}
@property
def state_key(self):
# note: we do not include `verbose` here on purpose
return self._generate_state_key(what=self.what)
def on_train_epoch_end(self, *args, **kwargs):
if self.what == "epochs":
self.state["epochs"] += 1
def on_train_batch_end(self, *args, **kwargs):
if self.what == "batches":
self.state["batches"] += 1
def load_state_dict(self, state_dict):
self.state.update(state_dict)
def state_dict(self):
return self.state.copy()
# two callbacks of the same type are being used
trainer = Trainer(callbacks=[Counter(what="epochs"), Counter(what="batches")])
A Lightning checkpoint from this Trainer with the two stateful callbacks will include the following information:
.. code-block::
{
"state_dict": ...,
"callbacks": {
"Counter{'what': 'batches'}": {"batches": 32, "epochs": 0},
"Counter{'what': 'epochs'}": {"batches": 0, "epochs": 2},
...
}
}
The implementation of a :attr:`~pytorch_lightning.callbacks.Callback.state_key` is essential here. If it were missing,
Lightning would not be able to disambiguate the state for these two callbacks, and :attr:`~pytorch_lightning.callbacks.Callback.state_key`
by default only defines the class name as the key, e.g., here ``Counter``.
Best Practices
--------------
The following are best practices when using/designing callbacks.
1. Callbacks should be isolated in their functionality.
2. Your callback should not rely on the behavior of other callbacks in order to work properly.
3. Do not manually call methods from the callback.
4. Directly calling methods (eg. `on_validation_end`) is strongly discouraged.
5. Whenever possible, your callbacks should not depend on the order in which they are executed.
-----------
.. _callback_hooks:
Callback API
------------
Here is the full API of methods available in the Callback base class.
The :class:`~pytorch_lightning.callbacks.Callback` class is the base for all the callbacks in Lightning just like the :class:`~pytorch_lightning.core.lightning.LightningModule` is the base for all models.
It defines a public interface that each callback implementation must follow, the key ones are:
Properties
^^^^^^^^^^
state_key
~~~~~~~~~
.. autoattribute:: pytorch_lightning.callbacks.Callback.state_key
:noindex:
Hooks
^^^^^
on_configure_sharded_model
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_configure_sharded_model
:noindex:
setup
~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.setup
:noindex:
teardown
~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.teardown
:noindex:
on_init_start
~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_init_start
:noindex:
on_init_end
~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_init_end
:noindex:
on_fit_start
~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_fit_start
:noindex:
on_fit_end
~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_fit_end
:noindex:
on_sanity_check_start
~~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_sanity_check_start
:noindex:
on_sanity_check_end
~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_sanity_check_end
:noindex:
on_train_batch_start
~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_train_batch_start
:noindex:
on_train_batch_end
~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_train_batch_end
:noindex:
on_train_epoch_start
~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_train_epoch_start
:noindex:
on_train_epoch_end
~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_train_epoch_end
:noindex:
on_validation_epoch_start
~~~~~~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_validation_epoch_start
:noindex:
on_validation_epoch_end
~~~~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_validation_epoch_end
:noindex:
on_test_epoch_start
~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_test_epoch_start
:noindex:
on_test_epoch_end
~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_test_epoch_end
:noindex:
on_predict_epoch_start
~~~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_predict_epoch_start
:noindex:
on_predict_epoch_end
~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_predict_epoch_end
:noindex:
.. automethod:: pytorch_lightning.callbacks.Callback.on_epoch_end
:noindex:
on_validation_batch_start
~~~~~~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_validation_batch_start
:noindex:
on_validation_batch_end
~~~~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_validation_batch_end
:noindex:
on_test_batch_start
~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_test_batch_start
:noindex:
on_test_batch_end
~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_test_batch_end
:noindex:
on_predict_batch_start
~~~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_predict_batch_start
:noindex:
on_predict_batch_end
~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_predict_batch_end
:noindex:
on_train_start
~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_train_start
:noindex:
on_train_end
~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_train_end
:noindex:
on_validation_start
~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_validation_start
:noindex:
on_validation_end
~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_validation_end
:noindex:
on_test_start
~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_test_start
:noindex:
on_test_end
~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_test_end
:noindex:
on_predict_start
~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_predict_start
:noindex:
on_predict_end
~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_predict_end
:noindex:
on_keyboard_interrupt
~~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_keyboard_interrupt
:noindex:
on_exception
~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_exception
:noindex:
state_dict
~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.state_dict
:noindex:
on_save_checkpoint
~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_save_checkpoint
:noindex:
load_state_dict
~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.load_state_dict
:noindex:
on_load_checkpoint
~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_load_checkpoint
:noindex:
on_before_backward
~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_before_backward
:noindex:
on_after_backward
~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_after_backward
:noindex:
on_before_optimizer_step
~~~~~~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_before_optimizer_step
:noindex:
on_before_zero_grad
~~~~~~~~~~~~~~~~~~~
.. automethod:: pytorch_lightning.callbacks.Callback.on_before_zero_grad
:noindex: