lightning/docs/source/common/loggers.rst

283 lines
8.7 KiB
ReStructuredText

.. testsetup:: *
from pytorch_lightning.trainer.trainer import Trainer
from pytorch_lightning.core.lightning import LightningModule
.. _loggers:
*******
Loggers
*******
Lightning supports the most popular logging frameworks (TensorBoard, Comet, Neptune, etc...). TensorBoard is used by default,
but you can pass to the :class:`~pytorch_lightning.trainer.trainer.Trainer` any combination of the following loggers.
.. note::
All loggers log by default to `os.getcwd()`. To change the path without creating a logger set
`Trainer(default_root_dir='/your/path/to/save/checkpoints')`
Read more about :doc:`logging <../extensions/logging>` options.
To log arbitrary artifacts like images or audio samples use the `trainer.log_dir` property to resolve
the path.
.. code-block:: python
def training_step(self, batch, batch_idx):
img = ...
log_image(img, self.trainer.log_dir)
Comet.ml
========
`Comet.ml <https://www.comet.ml/site/>`_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.CometLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install comet-ml
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode::
import os
from pytorch_lightning.loggers import CometLogger
comet_logger = CometLogger(
api_key=os.environ.get("COMET_API_KEY"),
workspace=os.environ.get("COMET_WORKSPACE"), # Optional
save_dir=".", # Optional
project_name="default_project", # Optional
rest_api_key=os.environ.get("COMET_REST_API_KEY"), # Optional
experiment_name="lightning_logs", # Optional
)
trainer = Trainer(logger=comet_logger)
The :class:`~pytorch_lightning.loggers.CometLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
self.logger.experiment.add_image("generated_images", some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.CometLogger` docs.
----------------
MLflow
======
`MLflow <https://mlflow.org/>`_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.MLFlowLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install mlflow
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. code-block:: python
from pytorch_lightning.loggers import MLFlowLogger
mlf_logger = MLFlowLogger(experiment_name="lightning_logs", tracking_uri="file:./ml-runs")
trainer = Trainer(logger=mlf_logger)
.. seealso::
:class:`~pytorch_lightning.loggers.MLFlowLogger` docs.
----------------
Neptune.ai
==========
`Neptune.ai <https://neptune.ai/>`_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.NeptuneLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install neptune-client
or with conda:
.. code-block:: bash
conda install -c conda-forge neptune-client
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. code-block:: python
from pytorch_lightning.loggers import NeptuneLogger
neptune_logger = NeptuneLogger(
api_key="ANONYMOUS", # replace with your own
project="common/pytorch-lightning-integration", # format "<WORKSPACE/PROJECT>"
tags=["training", "resnet"], # optional
)
trainer = Trainer(logger=neptune_logger)
The :class:`~pytorch_lightning.loggers.NeptuneLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. code-block:: python
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
# generic recipe for logging custom metadata (neptune specific)
metadata = ...
self.logger.experiment["your/metadata/structure"].log(metadata)
Note that syntax: ``self.logger.experiment["your/metadata/structure"].log(metadata)``
is specific to Neptune and it extends logger capabilities.
Specifically, it allows you to log various types of metadata like scores, files,
images, interactive visuals, CSVs, etc. Refer to the
`Neptune docs <https://docs.neptune.ai/you-should-know/logging-metadata#essential-logging-methods>`_
for more detailed explanations.
You can always use regular logger methods: ``log_metrics()`` and ``log_hyperparams()`` as these are also supported.
.. seealso::
:class:`~pytorch_lightning.loggers.NeptuneLogger` docs.
Logger `user guide <https://docs.neptune.ai/integrations-and-supported-tools/model-training/pytorch-lightning>`_.
----------------
Tensorboard
===========
To use `TensorBoard <https://pytorch.org/docs/stable/tensorboard.html>`_ as your logger do the following.
.. testcode::
from pytorch_lightning.loggers import TensorBoardLogger
logger = TensorBoardLogger("tb_logs", name="my_model")
trainer = Trainer(logger=logger)
The :class:`~pytorch_lightning.loggers.TensorBoardLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
self.logger.experiment.add_image("generated_images", some_img, 0)
To see your logs, run the following command in the terminal:
.. code-block:: bash
tensorboard --logdir=<logging_folder>
To visualize tensorboard in a jupyter notebook environment, run the following command in a jupyter cell:
.. code-block:: bash
%reload_ext tensorboard
%tensorboard --logdir=<logging_folder>
.. seealso::
:class:`~pytorch_lightning.loggers.TensorBoardLogger` docs.
----------------
Weights and Biases
==================
`Weights and Biases <https://docs.wandb.ai/integrations/lightning/>`_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.WandbLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install wandb
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. code-block:: python
from pytorch_lightning.loggers import WandbLogger
# instrument experiment with W&B
wandb_logger = WandbLogger(project="MNIST", log_model="all")
trainer = Trainer(logger=wandb_logger)
# log gradients and model topology
wandb_logger.watch(model)
The :class:`~pytorch_lightning.loggers.WandbLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. code-block:: python
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
# Option 1
self.logger.experiment.log({"generated_images": [wandb.Image(some_img, caption="...")]})
# Option 2 for specifically logging images
self.logger.log_image(key="generated_images", images=[some_img])
To visualize using wandb in a jupyter notebook environment use the following magic line command:
.. code-block:: shell
%%wandb
# Your training loop here
To display any existing dashboards, sweeps or reports directly in your notebook using the %wandb magic:
.. code-block:: shell
# Display a project workspace
%wandb USERNAME/PROJECT
More information is available `here <https://docs.wandb.ai/guides/track/jupyter>`__.
.. seealso::
- :class:`~pytorch_lightning.loggers.WandbLogger` docs.
- `W&B Documentation <https://docs.wandb.ai/integrations/lightning>`__
- `Demo in Google Colab <http://wandb.me/lightning>`__ with hyperparameter search and model logging
----------------
Multiple Loggers
================
Lightning supports the use of multiple loggers, just pass a list to the
:class:`~pytorch_lightning.trainer.trainer.Trainer`.
.. code-block:: python
from pytorch_lightning.loggers import TensorBoardLogger, WandbLogger
logger1 = TensorBoardLogger(save_dir="tb_logs", name="my_model")
logger2 = WandbLogger(save_dir="tb_logs", name="my_model")
trainer = Trainer(logger=[logger1, logger2])
The loggers are available as a list anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
# Option 1
self.logger.experiment[0].add_image("generated_images", some_img, 0)
# Option 2
self.logger[0].experiment.add_image("generated_images", some_img, 0)