lightning/pl_examples/domain_templates/generative_adversarial_net.py

214 lines
6.7 KiB
Python

"""
To run this template just do:
python generative_adversarial_net.py
After a few epochs, launch TensorBoard to see the images being generated at every batch:
tensorboard --logdir default
"""
import os
from argparse import ArgumentParser, Namespace
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from pytorch_lightning.core import LightningModule
from pytorch_lightning.trainer import Trainer
class Generator(nn.Module):
def __init__(self, latent_dim, img_shape):
super().__init__()
self.img_shape = img_shape
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*block(latent_dim, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *self.img_shape)
return img
class Discriminator(nn.Module):
def __init__(self, img_shape):
super().__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
class GAN(LightningModule):
def __init__(self,
latent_dim: int = 100,
lr: float = 0.0002,
b1: float = 0.5,
b2: float = 0.999,
batch_size: int = 64, **kwargs):
super().__init__()
self.latent_dim = latent_dim
self.lr = lr
self.b1 = b1
self.b2 = b2
self.batch_size = batch_size
# networks
mnist_shape = (1, 28, 28)
self.generator = Generator(latent_dim=self.latent_dim, img_shape=mnist_shape)
self.discriminator = Discriminator(img_shape=mnist_shape)
self.validation_z = torch.randn(8, self.latent_dim)
self.example_input_array = torch.zeros(2, hparams.latent_dim)
def forward(self, z):
return self.generator(z)
def adversarial_loss(self, y_hat, y):
return F.binary_cross_entropy(y_hat, y)
def training_step(self, batch, batch_idx, optimizer_idx):
imgs, _ = batch
# sample noise
z = torch.randn(imgs.shape[0], self.latent_dim)
z = z.type_as(imgs)
# train generator
if optimizer_idx == 0:
# generate images
self.generated_imgs = self(z)
# log sampled images
sample_imgs = self.generated_imgs[:6]
grid = torchvision.utils.make_grid(sample_imgs)
self.logger.experiment.add_image('generated_images', grid, 0)
# ground truth result (ie: all fake)
# put on GPU because we created this tensor inside training_loop
valid = torch.ones(imgs.size(0), 1)
valid = valid.type_as(imgs)
# adversarial loss is binary cross-entropy
g_loss = self.adversarial_loss(self.discriminator(self(z)), valid)
tqdm_dict = {'g_loss': g_loss}
self.log_dict(tqdm_dict)
return g_loss
# train discriminator
if optimizer_idx == 1:
# Measure discriminator's ability to classify real from generated samples
# how well can it label as real?
valid = torch.ones(imgs.size(0), 1)
valid = valid.type_as(imgs)
real_loss = self.adversarial_loss(self.discriminator(imgs), valid)
# how well can it label as fake?
fake = torch.zeros(imgs.size(0), 1)
fake = fake.type_as(imgs)
fake_loss = self.adversarial_loss(
self.discriminator(self(z).detach()), fake)
# discriminator loss is the average of these
d_loss = (real_loss + fake_loss) / 2
tqdm_dict = {'d_loss': d_loss}
self.log_dict(tqdm_dict)
return d_loss
def configure_optimizers(self):
lr = self.lr
b1 = self.b1
b2 = self.b2
opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(b1, b2))
opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2))
return [opt_g, opt_d], []
def train_dataloader(self):
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
dataset = MNIST(os.getcwd(), train=True, download=True, transform=transform)
return DataLoader(dataset, batch_size=self.batch_size)
def on_epoch_end(self):
z = self.validation_z.type_as(self.generator.model[0].weight)
# log sampled images
sample_imgs = self(z)
grid = torchvision.utils.make_grid(sample_imgs)
self.logger.experiment.add_image('generated_images', grid, self.current_epoch)
def main(args: Namespace) -> None:
# ------------------------
# 1 INIT LIGHTNING MODEL
# ------------------------
model = GAN(**vars(args))
# ------------------------
# 2 INIT TRAINER
# ------------------------
# If use distubuted training PyTorch recommends to use DistributedDataParallel.
# See: https://pytorch.org/docs/stable/nn.html#torch.nn.DataParallel
trainer = Trainer()
# ------------------------
# 3 START TRAINING
# ------------------------
trainer.fit(model)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5,
help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999,
help="adam: decay of first order momentum of gradient")
parser.add_argument("--latent_dim", type=int, default=100,
help="dimensionality of the latent space")
hparams = parser.parse_args()
main(hparams)