190 lines
7.6 KiB
Python
190 lines
7.6 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from datetime import timedelta
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
from lightning.fabric.plugins.environments import LightningEnvironment
|
|
from lightning.fabric.utilities.imports import _TORCH_GREATER_EQUAL_2_0
|
|
from lightning.pytorch import LightningModule, Trainer
|
|
from lightning.pytorch.demos.boring_classes import BoringModel
|
|
from lightning.pytorch.plugins import DoublePrecision, HalfPrecision, Precision
|
|
from lightning.pytorch.strategies import DDPStrategy
|
|
from lightning.pytorch.trainer.states import TrainerFn
|
|
from torch.nn.parallel import DistributedDataParallel
|
|
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("process_group_backend", "device_str", "expected_process_group_backend"),
|
|
[
|
|
pytest.param("foo", "cpu", "foo"),
|
|
pytest.param("foo", "cuda:0", "foo"),
|
|
pytest.param(None, "cuda:0", "nccl"),
|
|
pytest.param(None, "cpu", "gloo"),
|
|
],
|
|
)
|
|
def test_ddp_process_group_backend(process_group_backend, device_str, expected_process_group_backend):
|
|
"""Test settings for process group backend."""
|
|
|
|
class MockDDPStrategy(DDPStrategy):
|
|
def __init__(self, root_device, process_group_backend):
|
|
self._root_device = root_device
|
|
super().__init__(process_group_backend=process_group_backend)
|
|
|
|
@property
|
|
def root_device(self):
|
|
return self._root_device
|
|
|
|
strategy = MockDDPStrategy(process_group_backend=process_group_backend, root_device=torch.device(device_str))
|
|
assert strategy._get_process_group_backend() == expected_process_group_backend
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("strategy_name", "expected_ddp_kwargs"),
|
|
[
|
|
("ddp_spawn", {}),
|
|
pytest.param("ddp_fork", {}, marks=RunIf(skip_windows=True)),
|
|
pytest.param("ddp_notebook", {}, marks=RunIf(skip_windows=True)),
|
|
("ddp_spawn_find_unused_parameters_false", {"find_unused_parameters": False}),
|
|
("ddp_spawn_find_unused_parameters_true", {"find_unused_parameters": True}),
|
|
pytest.param(
|
|
"ddp_fork_find_unused_parameters_false", {"find_unused_parameters": False}, marks=RunIf(skip_windows=True)
|
|
),
|
|
pytest.param(
|
|
"ddp_fork_find_unused_parameters_true", {"find_unused_parameters": True}, marks=RunIf(skip_windows=True)
|
|
),
|
|
pytest.param(
|
|
"ddp_notebook_find_unused_parameters_false",
|
|
{"find_unused_parameters": False},
|
|
marks=RunIf(skip_windows=True),
|
|
),
|
|
pytest.param(
|
|
"ddp_notebook_find_unused_parameters_true",
|
|
{"find_unused_parameters": True},
|
|
marks=RunIf(skip_windows=True),
|
|
),
|
|
("ddp", {}),
|
|
("ddp_find_unused_parameters_false", {"find_unused_parameters": False}),
|
|
("ddp_find_unused_parameters_true", {"find_unused_parameters": True}),
|
|
],
|
|
)
|
|
def test_ddp_kwargs_from_registry(strategy_name, expected_ddp_kwargs, mps_count_0):
|
|
trainer = Trainer(strategy=strategy_name)
|
|
assert trainer.strategy._ddp_kwargs == expected_ddp_kwargs
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2)
|
|
@pytest.mark.parametrize(
|
|
("precision_plugin", "expected_dtype"),
|
|
[
|
|
(Precision(), torch.float32),
|
|
(DoublePrecision(), torch.float64),
|
|
(HalfPrecision("16-true"), torch.float16),
|
|
pytest.param(HalfPrecision("bf16-true"), torch.bfloat16, marks=RunIf(bf16_cuda=True)),
|
|
],
|
|
)
|
|
@mock.patch.dict(os.environ, {"LOCAL_RANK": "1"})
|
|
def test_tensor_init_context(precision_plugin, expected_dtype):
|
|
"""Test that the module under the init-context gets moved to the right device and dtype."""
|
|
parallel_devices = [torch.device("cuda", 0), torch.device("cuda", 1)]
|
|
expected_device = parallel_devices[1] if _TORCH_GREATER_EQUAL_2_0 else torch.device("cpu")
|
|
|
|
strategy = DDPStrategy(
|
|
parallel_devices=parallel_devices, precision_plugin=precision_plugin, cluster_environment=LightningEnvironment()
|
|
)
|
|
assert strategy.local_rank == 1
|
|
with strategy.tensor_init_context():
|
|
module = torch.nn.Linear(2, 2)
|
|
assert module.weight.device == module.bias.device == expected_device
|
|
assert module.weight.dtype == module.bias.dtype == expected_dtype
|
|
|
|
|
|
@mock.patch("torch.distributed.init_process_group")
|
|
def test_set_timeout(mock_init_process_group):
|
|
"""Test that the timeout gets passed to the ``torch.distributed.init_process_group`` function."""
|
|
test_timedelta = timedelta(seconds=30)
|
|
model = BoringModel()
|
|
ddp_strategy = DDPStrategy(timeout=test_timedelta)
|
|
trainer = Trainer(
|
|
max_epochs=1,
|
|
accelerator="cpu",
|
|
strategy=ddp_strategy,
|
|
)
|
|
# test wrap the model if fitting
|
|
trainer.strategy.connect(model)
|
|
trainer.lightning_module.trainer = trainer
|
|
trainer.strategy.setup_environment()
|
|
|
|
process_group_backend = trainer.strategy._get_process_group_backend()
|
|
global_rank = trainer.strategy.cluster_environment.global_rank()
|
|
world_size = trainer.strategy.cluster_environment.world_size()
|
|
mock_init_process_group.assert_called_with(
|
|
process_group_backend, rank=global_rank, world_size=world_size, timeout=test_timedelta
|
|
)
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
def test_ddp_configure_ddp(mps_count_0):
|
|
"""Tests with ddp strategy."""
|
|
model = BoringModel()
|
|
ddp_strategy = DDPStrategy()
|
|
trainer = Trainer(
|
|
max_epochs=1,
|
|
strategy=ddp_strategy,
|
|
)
|
|
# test wrap the model if fitting
|
|
trainer.state.fn = TrainerFn.FITTING
|
|
trainer.strategy.connect(model)
|
|
trainer.lightning_module.trainer = trainer
|
|
trainer.strategy.setup_environment()
|
|
assert isinstance(trainer.model, LightningModule)
|
|
trainer.strategy.setup(trainer)
|
|
# in DDPStrategy configure_ddp(), model wrapped by DistributedDataParallel
|
|
assert isinstance(trainer.model, DistributedDataParallel)
|
|
|
|
ddp_strategy = DDPStrategy()
|
|
trainer = Trainer(
|
|
max_epochs=1,
|
|
strategy=ddp_strategy,
|
|
)
|
|
# test do not wrap the model if TrainerFn is not fitting
|
|
trainer.state.fn = TrainerFn.VALIDATING
|
|
trainer.strategy.connect(model)
|
|
trainer.lightning_module.trainer = trainer
|
|
trainer.strategy.setup_environment()
|
|
trainer.strategy.setup(trainer)
|
|
# in DDPStrategy configure_ddp(), model are still LightningModule
|
|
assert isinstance(trainer.model, LightningModule)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=1)
|
|
@pytest.mark.parametrize("trainer_fn", [TrainerFn.VALIDATING, TrainerFn.TESTING, TrainerFn.PREDICTING])
|
|
def test_ddp_dont_configure_sync_batchnorm(trainer_fn):
|
|
model = BoringModel()
|
|
model.layer = torch.nn.BatchNorm1d(10)
|
|
ddp_strategy = DDPStrategy()
|
|
trainer = Trainer(accelerator="gpu", devices=1, strategy=ddp_strategy, sync_batchnorm=True)
|
|
trainer.state.fn = trainer_fn
|
|
trainer.strategy.connect(model)
|
|
trainer.lightning_module.trainer = trainer
|
|
trainer.strategy.setup_environment()
|
|
assert isinstance(trainer.model, LightningModule)
|
|
trainer.strategy.setup(trainer)
|
|
# because TrainerFn is not FITTING, model is not configured with sync batchnorm
|
|
assert not isinstance(trainer.strategy.model.layer, torch.nn.modules.batchnorm.SyncBatchNorm)
|