176 lines
6.1 KiB
Python
176 lines
6.1 KiB
Python
import json
|
|
import os
|
|
import platform
|
|
import shlex
|
|
import subprocess
|
|
import sys
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import tests.base.utils as tutils
|
|
from pytorch_lightning import Trainer
|
|
from tests.base import EvalModelTemplate
|
|
from tests.base.models import TestGAN
|
|
|
|
try:
|
|
from horovod.common.util import nccl_built
|
|
except ImportError:
|
|
HOROVOD_AVAILABLE = False
|
|
else:
|
|
HOROVOD_AVAILABLE = True
|
|
|
|
|
|
# This script will run the actual test model training in parallel
|
|
TEST_SCRIPT = os.path.join(os.path.dirname(__file__), 'data', 'horovod', 'train_default_model.py')
|
|
|
|
|
|
def _nccl_available():
|
|
if not HOROVOD_AVAILABLE:
|
|
return False
|
|
|
|
try:
|
|
return nccl_built()
|
|
except AttributeError:
|
|
# Horovod 0.19.1 nccl_built() does not yet work with Python 3.8:
|
|
# See: https://github.com/horovod/horovod/issues/1891
|
|
return False
|
|
|
|
|
|
def _run_horovod(trainer_options, on_gpu=False):
|
|
"""Execute the training script across multiple workers in parallel."""
|
|
tutils.reset_seed()
|
|
cmdline = [
|
|
'horovodrun',
|
|
'-np', '2',
|
|
sys.executable, TEST_SCRIPT,
|
|
'--trainer-options', shlex.quote(json.dumps(trainer_options))
|
|
]
|
|
if on_gpu:
|
|
cmdline += ['--on-gpu']
|
|
exit_code = subprocess.call(' '.join(cmdline), shell=True, env=os.environ.copy())
|
|
assert exit_code == 0
|
|
|
|
|
|
@pytest.mark.skipif(sys.version_info >= (3, 8), reason="Horovod not yet supported in Python 3.8")
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
def test_horovod_cpu(tmpdir):
|
|
"""Test Horovod running multi-process on CPU."""
|
|
trainer_options = dict(
|
|
default_root_dir=str(tmpdir),
|
|
gradient_clip_val=1.0,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
distributed_backend='horovod',
|
|
deterministic=True,
|
|
)
|
|
_run_horovod(trainer_options)
|
|
|
|
|
|
@pytest.mark.skipif(sys.version_info >= (3, 8), reason="Horovod not yet supported in Python 3.8")
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
def test_horovod_cpu_implicit(tmpdir):
|
|
"""Test Horovod without specifying a backend, inferring from env set by `horovodrun`."""
|
|
trainer_options = dict(
|
|
default_root_dir=str(tmpdir),
|
|
gradient_clip_val=1.0,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
deterministic=True,
|
|
)
|
|
_run_horovod(trainer_options)
|
|
|
|
|
|
@pytest.mark.skipif(sys.version_info >= (3, 8), reason="Horovod not yet supported in Python 3.8")
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
@pytest.mark.skipif(not _nccl_available(), reason="test requires Horovod with NCCL support")
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_horovod_multi_gpu(tmpdir):
|
|
"""Test Horovod with multi-GPU support."""
|
|
trainer_options = dict(
|
|
default_root_dir=str(tmpdir),
|
|
gradient_clip_val=1.0,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
gpus=1,
|
|
deterministic=True,
|
|
distributed_backend='horovod'
|
|
)
|
|
_run_horovod(trainer_options, on_gpu=True)
|
|
|
|
|
|
@pytest.mark.skipif(sys.version_info >= (3, 8), reason="Horovod not yet supported in Python 3.8")
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
@pytest.mark.skipif(not _nccl_available(), reason="test requires Horovod with NCCL support")
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
def test_horovod_transfer_batch_to_gpu(tmpdir):
|
|
|
|
class TestTrainingStepModel(EvalModelTemplate):
|
|
def training_step(self, batch, *args, **kwargs):
|
|
x, y = batch
|
|
assert str(x.device) != 'cpu'
|
|
assert str(y.device) != 'cpu'
|
|
return super(TestTrainingStepModel, self).training_step(batch, *args, **kwargs)
|
|
|
|
def validation_step(self, batch, *args, **kwargs):
|
|
x, y = batch
|
|
assert str(x.device) != 'cpu'
|
|
assert str(y.device) != 'cpu'
|
|
return super(TestTrainingStepModel, self).validation_step(batch, *args, **kwargs)
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = TestTrainingStepModel(hparams)
|
|
|
|
trainer_options = dict(
|
|
default_root_dir=str(tmpdir),
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
gpus=1,
|
|
deterministic=True,
|
|
distributed_backend='horovod'
|
|
)
|
|
tutils.run_model_test_without_loggers(trainer_options, model)
|
|
|
|
|
|
@pytest.mark.skipif(sys.version_info >= (3, 8), reason="Horovod not yet supported in Python 3.8")
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
def test_horovod_multi_optimizer(tmpdir):
|
|
model = TestGAN(**EvalModelTemplate.get_default_hparams())
|
|
|
|
trainer_options = dict(
|
|
default_root_dir=str(tmpdir),
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
deterministic=True,
|
|
distributed_backend='horovod'
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
assert result == 1, 'model failed to complete'
|
|
|
|
assert len(trainer.optimizers) == 2
|
|
for i, optimizer in enumerate(trainer.optimizers):
|
|
assert hasattr(optimizer, 'synchronize'), 'optimizer has not been wrapped into DistributedOptimizer'
|
|
|
|
def get_model_params(model):
|
|
return set([p for p in model.parameters()])
|
|
|
|
def get_optimizer_params(optimizer):
|
|
return set([p for group in optimizer.param_groups for p in group.get('params', [])])
|
|
|
|
assert get_model_params(model.generator) != get_model_params(model.discriminator)
|
|
assert get_model_params(model.generator) == get_optimizer_params(trainer.optimizers[0])
|
|
assert get_model_params(model.discriminator) == get_optimizer_params(trainer.optimizers[1])
|