lightning/dockers
Jirka Borovec 5f106957f7
CI: Use self-hosted Azure GPU runners (#14632)
* move config
* Apply suggestions from code review

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Akihiro Nitta <nitta@akihironitta.com>
Co-authored-by: otaj <6065855+otaj@users.noreply.github.com>
2022-10-05 10:43:54 +00:00
..
base-cuda Add bagua support for CUDA 11.6 images (#14529) 2022-09-09 20:07:25 +00:00
base-ipu Improve building times of IPU docker image (#14934) 2022-09-29 09:55:12 +00:00
base-xla CI: Update XLA from 1.9 to 1.12 (#14013) 2022-08-05 05:04:45 -04:00
ci-runner-hpu CI: Use self-hosted Azure GPU runners (#14632) 2022-10-05 10:43:54 +00:00
ci-runner-ipu CI: Use self-hosted Azure GPU runners (#14632) 2022-10-05 10:43:54 +00:00
nvidia bump base NGC image (#13346) 2022-07-15 21:36:19 +00:00
release CI/CD: Add CUDA version to docker image tags (#13831) 2022-08-10 10:37:50 +00:00
tpu-tests Refactor XLA and TPU checks across codebase (#14550) 2022-10-04 22:54:14 +00:00
README.md [CI] Bump CUDA in Docker images to 11.6.1 (#14348) 2022-08-23 12:10:52 -04:00

README.md

Docker images

Build images from Dockerfiles

You can build it on your own, note it takes lots of time, be prepared.

git clone https://github.com/Lightning-AI/lightning.git

# build with the default arguments
docker image build -t pytorch-lightning:latest -f dockers/base-cuda/Dockerfile .

# build with specific arguments
docker image build -t pytorch-lightning:base-cuda-py3.9-torch1.12-cuda11.6.1 -f dockers/base-cuda/Dockerfile --build-arg PYTHON_VERSION=3.9 --build-arg PYTORCH_VERSION=1.12 --build-arg CUDA_VERSION=11.6.1 .

To run your docker use

docker image list
docker run --rm -it pytorch-lightning:latest bash

and if you do not need it anymore, just clean it:

docker image list
docker image rm pytorch-lightning:latest

Run docker image with GPUs

To run docker image with access to your GPUs, you need to install

# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker

and later run the docker image with --gpus all. For example,

docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.12-cuda11.6.1

Run Jupyter server

Inspiration comes from https://u.group/thinking/how-to-put-jupyter-notebooks-in-a-dockerfile

  1. Build the docker image:
    docker image build -t pytorch-lightning:v1.6.5 -f dockers/nvidia/Dockerfile --build-arg LIGHTNING_VERSION=1.6.5 .
    
  2. start the server and map ports:
    docker run --rm -it --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=all -p 8888:8888 pytorch-lightning:v1.6.5
    
  3. Connect in local browser:
    • copy the generated path e.g. http://hostname:8888/?token=0719fa7e1729778b0cec363541a608d5003e26d4910983c6
    • replace the hostname by localhost