79 lines
2.7 KiB
Python
79 lines
2.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from typing import Optional
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.plugins.io.xla_plugin import XLACheckpointIO
|
|
from pytorch_lightning.plugins.precision import PrecisionPlugin
|
|
from pytorch_lightning.strategies.single_device import SingleDeviceStrategy
|
|
from pytorch_lightning.utilities import _TPU_AVAILABLE, find_shared_parameters, set_shared_parameters
|
|
from pytorch_lightning.utilities.model_helpers import is_overridden
|
|
|
|
if _TPU_AVAILABLE:
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
|
|
class SingleTPUStrategy(SingleDeviceStrategy):
|
|
"""Strategy for training on a single TPU device."""
|
|
|
|
def __init__(
|
|
self,
|
|
device: int,
|
|
accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None,
|
|
checkpoint_io: Optional[XLACheckpointIO] = None,
|
|
precision_plugin: Optional[PrecisionPlugin] = None,
|
|
debug: bool = False,
|
|
):
|
|
device = xm.xla_device(device)
|
|
checkpoint_io = checkpoint_io or XLACheckpointIO()
|
|
super().__init__(
|
|
accelerator=accelerator, device=device, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin
|
|
)
|
|
|
|
self.debug = debug
|
|
self.tpu_local_core_rank = 0
|
|
self.tpu_global_core_rank = 0
|
|
|
|
@property
|
|
def is_distributed(self) -> bool:
|
|
return False
|
|
|
|
def setup(self, trainer: "pl.Trainer") -> None:
|
|
shared_params = find_shared_parameters(self.model)
|
|
self.model_to_device()
|
|
if is_overridden("on_post_move_to_device", self.lightning_module):
|
|
self.model.on_post_move_to_device()
|
|
else:
|
|
set_shared_parameters(self.model, shared_params)
|
|
|
|
super().setup(trainer)
|
|
|
|
if isinstance(self.device, int):
|
|
self.device = xm.xla_device(self.device)
|
|
|
|
if self.debug:
|
|
os.environ["PT_XLA_DEBUG"] = str(1)
|
|
|
|
self.tpu_local_core_rank = xm.get_local_ordinal()
|
|
self.tpu_global_core_rank = xm.get_ordinal()
|
|
|
|
def model_to_device(self) -> None:
|
|
self.model.to(self.root_device)
|
|
|
|
def teardown(self) -> None:
|
|
super().teardown()
|
|
# TPU teardown
|
|
os.environ.pop("PT_XLA_DEBUG", None)
|