lightning/pytorch_lightning/strategies/ddp2.py

76 lines
2.6 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from pytorch_lightning.strategies.ddp import DDPStrategy
from pytorch_lightning.utilities.apply_func import apply_to_collection
from pytorch_lightning.utilities.enums import _StrategyType
from pytorch_lightning.utilities.types import _METRIC_COLLECTION
class DDP2Strategy(DDPStrategy):
"""DDP2 behaves like DP in one node, but synchronization across nodes behaves like in DDP."""
distributed_backend = _StrategyType.DDP2
@property
def global_rank(self) -> int:
return self.node_rank
@property
def world_size(self) -> int:
return self.num_nodes
def reduce(self, collection: _METRIC_COLLECTION, *args, **kwargs) -> _METRIC_COLLECTION:
"""Reduces a collection of tensors from all processes. It can be applied to just a single tensor. In DDP2,
the reduction here is only across local devices within the node.
Args:
collection: The collection of tensors to sync and reduce.
*args: ignored for DDP2
**kwargs: ignored for DDP2
Return:
Reduced tensor values or the same value if it was not or did not contain a tensor.
"""
def mean(t: torch.Tensor) -> torch.Tensor:
original_dtype = t.dtype
return t.float().mean().to(original_dtype)
return apply_to_collection(collection, torch.Tensor, mean)
@property
def root_device(self):
return self.parallel_devices[0]
def model_to_device(self):
# no need to do anything when model is wrapped in torch.nn.DataParallel
pass
@property
def distributed_sampler_kwargs(self):
distributed_sampler_kwargs = dict(num_replicas=self.num_nodes, rank=self.global_rank)
return distributed_sampler_kwargs
@property
def _is_single_process_single_device(self) -> bool:
return False
def set_world_ranks(self) -> None:
if self.cluster_environment is None:
return
self.cluster_environment.set_global_rank(self.node_rank)
self.cluster_environment.set_world_size(self.num_nodes)