lightning/tests
Jirka Borovec f72e354ee6 fixing TensorBoard (#687)
* flake8

* fix typo

* fix tensorboardlogger
drop test_tube dependence

* formatting

* fix tensorboard & tests

* upgrade Tensorboard

* test formatting separately

* try to fix JIT issue

* add tests for 1.4
2020-01-16 07:22:29 -05:00
..
README.md Update README.md 2019-10-23 06:13:31 -04:00
__init__.py added init to test folder 2019-07-24 21:32:31 -04:00
conftest.py Fix amp tests (#661) 2020-01-05 14:34:25 -05:00
debug.py rename variables nb -> num (#567) 2019-12-04 06:57:10 -05:00
requirements.txt fixing TensorBoard (#687) 2020-01-16 07:22:29 -05:00
test_amp.py Fix amp tests (#661) 2020-01-05 14:34:25 -05:00
test_cpu_models.py fixing TensorBoard (#687) 2020-01-16 07:22:29 -05:00
test_gpu_models.py Simplify variables: step, epoch, max_epochs, min_epochs (#589) 2019-12-07 08:50:21 -05:00
test_logging.py fixing TensorBoard (#687) 2020-01-16 07:22:29 -05:00
test_restore_models.py fixing TensorBoard (#687) 2020-01-16 07:22:29 -05:00
test_trainer.py fixing TensorBoard (#687) 2020-01-16 07:22:29 -05:00
utils.py fixing TensorBoard (#687) 2020-01-16 07:22:29 -05:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

git clone https://github.com/williamFalcon/pytorch-lightning
cd pytorch-lightning

# install module locally
pip install -e .

# install dev deps
pip install -r requirements.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage 
pip install coverage
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v --doctest-modules

# print coverage stats
coverage report -m

# exporting resulys
coverage xml
codecov -t 17327163-8cca-4a5d-86c8-ca5f2ef700bc  -v