163 lines
5.8 KiB
Python
163 lines
5.8 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License
|
|
|
|
import os
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
from pytorch_lightning.utilities.distributed import rank_zero_only
|
|
from pytorch_lightning import _logger as log
|
|
|
|
try:
|
|
from apex import amp
|
|
except ImportError:
|
|
APEX_AVAILABLE = False
|
|
else:
|
|
APEX_AVAILABLE = True
|
|
|
|
|
|
class DDPSpawnBackend(object):
|
|
|
|
def __init__(self, trainer):
|
|
self.trainer = trainer
|
|
self.mp_queue = None
|
|
|
|
def setup(self):
|
|
self.trainer.set_random_port()
|
|
|
|
# pass in a state q
|
|
smp = mp.get_context('spawn')
|
|
self.mp_queue = smp.SimpleQueue()
|
|
|
|
def train(self, model, nprocs):
|
|
mp.spawn(self.ddp_train, nprocs=nprocs, args=(self.mp_queue, model,))
|
|
|
|
def teardown(self, model):
|
|
# restore main state with best weights
|
|
best_path = self.mp_queue.get()
|
|
results = self.mp_queue.get()
|
|
last_path = self.mp_queue.get()
|
|
|
|
# transfer back the best path to the trainer
|
|
if self.trainer.checkpoint_callback:
|
|
self.trainer.checkpoint_callback.best_model_path = best_path
|
|
# todo, pass also bets score
|
|
|
|
# load last weights
|
|
if last_path is not None and not self.trainer.testing:
|
|
ckpt = torch.load(last_path, map_location=lambda storage, loc: storage)
|
|
model.load_state_dict(ckpt)
|
|
|
|
self.trainer.model = model
|
|
return results
|
|
|
|
def ddp_train(self, process_idx, mp_queue, model):
|
|
"""
|
|
Entry point for ddp
|
|
|
|
Args:
|
|
process_idx:
|
|
mp_queue: multiprocessing queue
|
|
model:
|
|
|
|
Returns:
|
|
|
|
"""
|
|
# show progressbar only on progress_rank 0
|
|
if (self.trainer.node_rank != 0 or process_idx != 0) and self.trainer.progress_bar_callback is not None:
|
|
self.trainer.progress_bar_callback.disable()
|
|
|
|
# determine which process we are and world size
|
|
if self.trainer.use_ddp:
|
|
self.trainer.local_rank = process_idx
|
|
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
|
|
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes
|
|
|
|
elif self.trainer.use_ddp2:
|
|
self.trainer.local_rank = self.trainer.node_rank
|
|
self.trainer.global_rank = self.trainer.node_rank
|
|
self.trainer.world_size = self.trainer.num_nodes
|
|
|
|
# set warning rank
|
|
rank_zero_only.rank = self.trainer.global_rank
|
|
|
|
# set up server using proc 0's ip address
|
|
# try to init for 20 times at max in case ports are taken
|
|
# where to store ip_table
|
|
model.trainer = self.trainer
|
|
model.init_ddp_connection(
|
|
self.trainer.global_rank,
|
|
self.trainer.world_size,
|
|
self.trainer.is_slurm_managing_tasks
|
|
)
|
|
|
|
# call setup after the ddp process has connected
|
|
self.trainer.call_setup_hook(model)
|
|
|
|
# on world_size=0 let everyone know training is starting
|
|
if self.trainer.is_global_zero:
|
|
log.info('-' * 100)
|
|
log.info(f'distributed_backend={self.trainer.distributed_backend}')
|
|
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
|
|
log.info('-' * 100)
|
|
|
|
# CHOOSE OPTIMIZER
|
|
# allow for lr schedulers as well
|
|
optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model)
|
|
self.trainer.optimizers = optimizers
|
|
self.trainer.lr_schedulers = lr_schedulers
|
|
self.trainer.optimizer_frequencies = optimizer_frequencies
|
|
|
|
# MODEL
|
|
# copy model to each gpu
|
|
if self.trainer.on_gpu:
|
|
gpu_idx = process_idx
|
|
self.trainer.root_gpu = gpu_idx
|
|
torch.cuda.set_device(self.trainer.root_gpu)
|
|
model.cuda(self.trainer.root_gpu)
|
|
|
|
# set model properties before going into wrapper
|
|
self.trainer.copy_trainer_model_properties(model)
|
|
|
|
# AMP
|
|
# run through amp wrapper before going to distributed DP
|
|
# TODO: remove with dropping NVIDIA AMP support
|
|
native_amp_available = hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast")
|
|
if self.trainer.use_amp and not native_amp_available:
|
|
model, optimizers = model.configure_apex(amp, model, self.trainer.optimizers, self.trainer.amp_level)
|
|
self.trainer.optimizers = optimizers
|
|
self.trainer.reinit_scheduler_properties(self.trainer.optimizers, self.trainer.lr_schedulers)
|
|
|
|
# DDP2 uses all GPUs on the machine
|
|
if self.trainer.distributed_backend == 'ddp' or self.trainer.distributed_backend == 'ddp_spawn':
|
|
device_ids = [self.trainer.root_gpu]
|
|
elif self.trainer.use_ddp2:
|
|
device_ids = self.trainer.data_parallel_device_ids
|
|
else: # includes ddp_cpu
|
|
device_ids = None
|
|
|
|
# allow user to configure ddp
|
|
model = model.configure_ddp(model, device_ids)
|
|
|
|
# continue training routine
|
|
results = self.trainer.run_pretrain_routine(model)
|
|
|
|
# get original model
|
|
model = self.trainer.get_model()
|
|
|
|
# persist info in ddp_spawn
|
|
self.trainer.transfer_distrib_spawn_state_on_fit_end(model, mp_queue, results)
|
|
|
|
# clean up memory
|
|
torch.cuda.empty_cache()
|