96 lines
3.3 KiB
Python
96 lines
3.3 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from contextlib import contextmanager
|
|
from typing import Callable, Generator
|
|
|
|
import torch
|
|
from torch.optim import LBFGS, Optimizer
|
|
|
|
from pytorch_lightning.core import LightningModule
|
|
from pytorch_lightning.plugins.precision.mixed import MixedPrecisionPlugin
|
|
from pytorch_lightning.utilities import _NATIVE_AMP_AVAILABLE, AMPType
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
if _NATIVE_AMP_AVAILABLE:
|
|
from torch.cuda.amp import autocast
|
|
else:
|
|
autocast = None
|
|
|
|
|
|
class NativeMixedPrecisionPlugin(MixedPrecisionPlugin):
|
|
|
|
def __init__(self):
|
|
self.backend = AMPType.NATIVE
|
|
self.scaler = torch.cuda.amp.GradScaler()
|
|
|
|
def backward(
|
|
self,
|
|
model: LightningModule,
|
|
closure_loss: torch.Tensor,
|
|
optimizer: Optimizer,
|
|
opt_idx: int,
|
|
should_accumulate: bool,
|
|
*args,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
"""performs the actual backpropagation
|
|
|
|
Args:
|
|
model: the model to be optimized
|
|
closure_loss: the loss value obtained from the closure
|
|
optimizer: the optimizer to perform the step lateron
|
|
opt_idx: the optimizer's index
|
|
should_accumulate: whether to accumulate gradients or not
|
|
|
|
"""
|
|
closure_loss = self.scaler.scale(closure_loss)
|
|
|
|
closure_loss = super().backward(model, closure_loss, optimizer, opt_idx, should_accumulate, *args, **kwargs)
|
|
|
|
# unscale gradient to allow analyze within `on_after_backward`
|
|
if not should_accumulate and model.automatic_optimization:
|
|
self.scaler.unscale_(optimizer)
|
|
|
|
return closure_loss
|
|
|
|
def pre_optimizer_step(
|
|
self, pl_module: LightningModule, optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs
|
|
) -> bool:
|
|
"""always called before the optimizer step.
|
|
Checks that the optimizer is not LBFGS, as this one is not supported by native amp
|
|
"""
|
|
if isinstance(optimizer, LBFGS):
|
|
raise MisconfigurationException(
|
|
f"native PyTorch amp and lbfgs are not compatible (optimizer {optimizer_idx})."
|
|
" To request, please file a Github issue in PyTorch and tag @mcarilli"
|
|
)
|
|
lambda_closure()
|
|
|
|
if not pl_module.automatic_optimization:
|
|
self.scaler.unscale_(optimizer)
|
|
pl_module.trainer.call_hook("on_after_backward")
|
|
|
|
return False
|
|
|
|
def post_optimizer_step(self, optimizer: Optimizer, optimizer_idx: int) -> None:
|
|
"""Updates the GradScaler"""
|
|
self.scaler.step(optimizer)
|
|
self.scaler.update()
|
|
|
|
@contextmanager
|
|
def train_step_context(self) -> Generator[autocast, None, None]:
|
|
"""Enable autocast context"""
|
|
with torch.cuda.amp.autocast():
|
|
yield
|