lightning/pytorch_lightning/trainer/training_loop.py

980 lines
40 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
from copy import copy, deepcopy
import numpy as np
import torch
import torch.distributed as torch_distrib
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.core.memory import ModelSummary
from pytorch_lightning.core.optimizer import LightningOptimizer
from pytorch_lightning.core.step_result import EvalResult, Result
from pytorch_lightning.trainer.states import TrainerState
from pytorch_lightning.trainer.supporters import Accumulator, TensorRunningAccum
from pytorch_lightning.utilities import TPU_AVAILABLE, AMPType, parsing
from pytorch_lightning.utilities.distributed import rank_zero_info, rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.memory import recursive_detach
from pytorch_lightning.utilities.model_utils import is_overridden
from pytorch_lightning.utilities.parsing import AttributeDict
from pytorch_lightning.utilities.warning_utils import WarningCache
class TrainLoop:
def __init__(self, trainer):
self.trainer = trainer
self.early_stopping_accumulator = None
self.checkpoint_accumulator = None
self.accumulated_loss = None
self.warning_cache = WarningCache()
self._teardown_already_run = False
self.running_loss = TensorRunningAccum(window_length=20)
self.automatic_optimization = True
self._curr_step_result = None
self._cur_grad_norm_dict = None
def on_trainer_init(
self, max_epochs, min_epochs, max_steps, min_steps, num_sanity_val_steps, automatic_optimization
):
self.trainer.global_step = 0
self.trainer.current_epoch = 0
self.trainer.interrupted = False
self.trainer.should_stop = False
self.trainer._state = TrainerState.INITIALIZING
self.trainer.total_batch_idx = 0
self.trainer.batch_idx = 0
self.trainer.num_training_batches = 0
self.trainer.train_dataloader = None
self.automatic_optimization = automatic_optimization
self.trainer.max_epochs = max_epochs
self.trainer.min_epochs = min_epochs
self.trainer.max_steps = max_steps
self.trainer.min_steps = min_steps
if num_sanity_val_steps == -1:
self.trainer.num_sanity_val_steps = float("inf")
else:
self.trainer.num_sanity_val_steps = num_sanity_val_steps
@property
def num_optimizers(self):
num_optimizers = len(self.get_optimizers_iterable())
return num_optimizers
def should_skip_training(self):
if self.trainer.current_epoch >= self.trainer.max_epochs:
return True
if self.trainer.limit_train_batches == 0:
return True
return False
def on_train_start(self):
# clear cache before training
if self.trainer.on_gpu and self.trainer.root_gpu is not None:
# use context because of:
# https://discuss.pytorch.org/t/out-of-memory-when-i-use-torch-cuda-empty-cache/57898
with torch.cuda.device(f"cuda:{self.trainer.root_gpu}"):
torch.cuda.empty_cache()
# hook
self.trainer.call_hook("on_train_start")
def setup_fit(self, model, train_dataloader, val_dataloaders, datamodule):
# bind logger and other properties
self.trainer.model_connector.copy_trainer_model_properties(model)
# clean hparams
if hasattr(model, "hparams"):
parsing.clean_namespace(model.hparams)
# links data to the trainer
self.trainer.data_connector.attach_data(model, train_dataloader, val_dataloaders, datamodule)
# check that model is configured correctly
self.trainer.config_validator.verify_loop_configurations(model)
def setup_training(self, model: LightningModule):
"""Sanity check a few things before starting actual training.
Args:
model: The model to run sanity test on.
"""
# --------------------------
# Setup??
# --------------------------
ref_model = model
if self.trainer.data_parallel:
ref_model = model.module
# set the ranks and devices
self.trainer.accelerator_backend.dist.rank = self.trainer.global_rank
self.trainer.accelerator_backend.dist.device = ref_model.device
# give model convenience properties
ref_model.trainer = self.trainer
# set local properties on the model
self.trainer.model_connector.copy_trainer_model_properties(ref_model)
# init amp. Must be done here instead of __init__ to allow ddp to work
if self.trainer.amp_backend == AMPType.NATIVE and self.trainer.precision == 16 and not self.trainer.use_tpu:
self.trainer.scaler = self.trainer.precision_connector.backend.scaler
# log hyper-parameters
if self.trainer.logger is not None:
# save exp to get started (this is where the first experiment logs are written)
self.trainer.logger.log_hyperparams(ref_model.hparams_initial)
self.trainer.logger.log_graph(ref_model)
self.trainer.logger.save()
# wait for all to join if on distributed
self.trainer.accelerator_backend.barrier("setup_training")
# register auto-resubmit when on SLURM
self.trainer.slurm_connector.register_slurm_signal_handlers()
# --------------------------
# Pre-train
# --------------------------
# on pretrain routine start
self.trainer.on_pretrain_routine_start(ref_model)
if self.trainer.is_function_implemented("on_pretrain_routine_start"):
ref_model.on_pretrain_routine_start()
# print model summary
if self.trainer.is_global_zero and self.trainer.weights_summary is not None and not self.trainer.testing:
if self.trainer.weights_summary in ModelSummary.MODES:
ref_model.summarize(mode=self.trainer.weights_summary)
else:
raise MisconfigurationException("weights_summary can be None, " + ", ".join(ModelSummary.MODES))
# track model now.
# if cluster resets state, the model will update with the saved weights
self.trainer.model = model
# restore training and model before hpc is called
self.trainer.checkpoint_connector.restore_weights(model)
# on pretrain routine end
self.trainer.on_pretrain_routine_end(ref_model)
if self.trainer.is_function_implemented("on_pretrain_routine_end"):
ref_model.on_pretrain_routine_end()
def on_train_end(self):
if self._teardown_already_run:
return
self._teardown_already_run = True
# trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates
# when a checkpoint was saved at the last step
self.trainer.global_step -= 1
self.check_checkpoint_callback(should_save=True, is_last=True)
self.trainer.global_step += 1
# hook
self.trainer.call_hook("on_train_end")
# kill loggers
if self.trainer.logger is not None:
self.trainer.logger.finalize("success")
# summarize profile results
if self.trainer.global_rank == 0:
self.trainer.profiler.describe()
# give accelerators a chance to finish
self.trainer.accelerator_backend.on_train_end()
# clear mem
if self.trainer.on_gpu:
model = self.trainer.get_model()
model.cpu()
torch.cuda.empty_cache()
def check_checkpoint_callback(self, should_save, is_last=False):
# TODO bake this logic into the checkpoint callback
if should_save and self.trainer.checkpoint_connector.has_trained:
checkpoint_callbacks = [c for c in self.trainer.callbacks if isinstance(c, ModelCheckpoint)]
if is_last and any(c.save_last for c in checkpoint_callbacks):
rank_zero_info("Saving latest checkpoint...")
model = self.trainer.get_model()
for callback in checkpoint_callbacks:
callback.on_validation_end(self.trainer, model)
def on_train_epoch_start(self, epoch):
# update training progress in trainer
self.trainer.current_epoch = epoch
model = self.trainer.get_model()
# reset train dataloader
if self.trainer.reload_dataloaders_every_epoch:
self.trainer.reset_train_dataloader(model)
# set seed for distributed sampler (enables shuffling for each epoch)
try:
self.trainer.train_dataloader.sampler.set_epoch(epoch)
except Exception:
pass
# changing gradient according accumulation_scheduler
self.trainer.accumulation_scheduler.on_epoch_start(self.trainer, self.trainer.get_model())
# stores accumulated grad fractions per batch
self.accumulated_loss = TensorRunningAccum(window_length=self.trainer.accumulate_grad_batches)
# structured result accumulators for callbacks
self.early_stopping_accumulator = Accumulator()
self.checkpoint_accumulator = Accumulator()
# hook
self.trainer.call_hook("on_epoch_start")
self.trainer.call_hook("on_train_epoch_start")
def on_train_batch_end(self, epoch_output, epoch_end_outputs, batch, batch_idx, dataloader_idx):
# hook
self.trainer.call_hook('on_batch_end')
self.trainer.call_hook('on_train_batch_end', epoch_end_outputs, batch, batch_idx, dataloader_idx)
# figure out what to track for epoch end
self.track_epoch_end_reduce_metrics(epoch_output, epoch_end_outputs)
# reset batch logger internals
self.trainer.logger_connector.on_train_batch_end()
def reset_train_val_dataloaders(self, model):
if not self.trainer.reload_dataloaders_every_epoch:
self.trainer.reset_train_dataloader(model)
if self.trainer.val_dataloaders is None and not self.trainer.reload_dataloaders_every_epoch:
self.trainer.reset_val_dataloader(model)
def track_epoch_end_reduce_metrics(self, epoch_output, epoch_end_outputs):
# track the outputs to reduce at the end of the epoch
for opt_idx, opt_outputs in enumerate(epoch_end_outputs):
# with 1 step (no tbptt) don't use a sequence at epoch end
if isinstance(opt_outputs, list) and len(opt_outputs) == 1 and not isinstance(opt_outputs[0], Result):
opt_outputs = opt_outputs[0]
epoch_output[opt_idx].append(opt_outputs)
def get_optimizers_iterable(self):
"""
Generates an iterable with (idx, optimizer) for each optimizer.
"""
if not self.trainer.optimizer_frequencies:
# call training_step once per optimizer
return list(enumerate(self.trainer.optimizers))
optimizer_freq_cumsum = np.cumsum(self.trainer.optimizer_frequencies)
optimizers_loop_length = optimizer_freq_cumsum[-1]
current_place_in_loop = self.trainer.total_batch_idx % optimizers_loop_length
# find optimzier index by looking for the first {item > current_place} in the cumsum list
opt_idx = np.argmax(optimizer_freq_cumsum > current_place_in_loop)
return [[opt_idx, self.trainer.optimizers[opt_idx]]]
def on_after_backward(self, training_step_output, batch_idx, untouched_loss):
is_result_obj = isinstance(training_step_output, Result)
if is_result_obj:
training_step_output.detach()
else:
training_step_output.batch_loss = training_step_output.batch_loss.detach()
# insert after step hook
self.trainer.call_hook("on_after_backward")
# when in dev debugging track the losses
self.trainer.dev_debugger.track_train_loss_history(batch_idx, untouched_loss.detach())
def _check_training_step_output(self, training_step_output):
if isinstance(training_step_output, torch.Tensor) and not self.automatic_optimization:
if training_step_output.grad_fn is None:
# TODO: Find why - RuntimeError: Expected to mark a variable ready only once ...
raise MisconfigurationException("In manual optimization, `training_step` should not return a Tensor")
def training_step(self, split_batch, batch_idx, opt_idx, hiddens):
# give the PL module a result for logging
model_ref = self.trainer.get_model()
with self.trainer.profiler.profile("model_forward"):
args = self.build_train_args(split_batch, batch_idx, opt_idx, hiddens)
# manually capture logged metrics
model_ref._current_fx_name = 'training_step'
model_ref._results = Result()
training_step_output = self.trainer.accelerator_backend.training_step(args)
self.trainer.logger_connector.cache_logged_metrics()
self._check_training_step_output(training_step_output)
training_step_output = self.trainer.call_hook("training_step_end", training_step_output)
training_step_output_for_epoch_end, training_step_output = self._process_training_step_output(
training_step_output, split_batch
)
is_result_obj = isinstance(training_step_output, Result)
if training_step_output_for_epoch_end is None:
return None
# enable empty loss when using manual opt
closure_loss = None
untouched_loss = None
if self.trainer.train_loop.automatic_optimization:
# accumulate loss
# (if accumulate_grad_batches = 1 no effect)
if is_result_obj:
closure_loss = training_step_output.minimize
else:
closure_loss = training_step_output.batch_loss
closure_loss = closure_loss / self.trainer.accumulate_grad_batches
# the loss will get scaled for amp. avoid any modifications to it
untouched_loss = closure_loss.detach().clone()
# result
result = AttributeDict(
closure_loss=closure_loss,
loss=untouched_loss,
training_step_output=training_step_output,
training_step_output_for_epoch_end=training_step_output_for_epoch_end,
hiddens=training_step_output.hiddens,
)
return result
def _process_training_step_output(self, training_step_output, split_batch):
training_step_output_for_epoch_end = training_step_output
# enable validation_step return None
if training_step_output_for_epoch_end is None:
return None, None
# -----------------------------------------
# process result return (DEPRECATE in 1.0)
# -----------------------------------------
if isinstance(training_step_output, Result):
training_step_output_for_epoch_end = self._process_result(training_step_output, split_batch)
return training_step_output_for_epoch_end, training_step_output
# -----------------------------------------
# process hybrid (1.0)
# -----------------------------------------
# no need for these checks in 1.0.0
# TODO: remove checks in 1.0.0
is_tensor = isinstance(training_step_output_for_epoch_end, torch.Tensor)
is_1_0_output = is_tensor or ("log" not in training_step_output and "progress_bar" not in training_step_output)
if is_1_0_output:
return self._process_training_step_output_1_0(training_step_output, split_batch)
# -----------------------------------------
# process old dict (deprecate 1.0)
# -----------------------------------------
training_step_output = self.trainer.process_dict_result(training_step_output, train=True)
training_step_output = AttributeDict(
batch_loss=training_step_output[0],
pbar_on_batch_end=training_step_output[1],
log_metrics=training_step_output[2],
callback_metrics=training_step_output[3],
hiddens=training_step_output[4],
)
# if the user decides to finally reduce things in epoch_end, save raw output without graphs
if isinstance(training_step_output_for_epoch_end, torch.Tensor):
training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach()
else:
training_step_output_for_epoch_end = recursive_detach(training_step_output_for_epoch_end)
return training_step_output_for_epoch_end, training_step_output
def _process_training_step_output_1_0(self, training_step_output, split_batch):
result = self.trainer.get_model()._results
loss = None
hiddens = None
# handle dict return
if isinstance(training_step_output, dict):
loss = training_step_output.pop("loss", None)
hiddens = training_step_output.pop("hiddens", None)
result["extra"] = training_step_output
# handle scalar return
elif isinstance(training_step_output, torch.Tensor):
loss = training_step_output
result["extra"] = {}
# map to results under the hood
result.minimize = loss
result.hiddens = hiddens
# track batch for manual reduction with result
result.track_batch_size(len(split_batch))
# track metrics without grads for epoch reduction
training_step_output_for_epoch_end = copy(result)
training_step_output_for_epoch_end.detach()
if self.trainer.move_metrics_to_cpu:
training_step_output_for_epoch_end.cpu()
# what flows back into the system
training_step_output = result
return training_step_output_for_epoch_end, training_step_output
def _process_result(self, training_step_output, split_batch):
training_step_output.track_batch_size(len(split_batch))
m = """
TrainResult and EvalResult were deprecated in 0.9.1 and support will drop in 1.0.0.
Use self.log and .write from the LightningModule to log metrics and write predictions.
training_step can now only return a scalar (for the loss) or a dictionary with anything you want.
Option 1:
return loss
Option 2:
return {'loss': loss, 'anything_else': ...}
Option 3:
return {'loss': loss, 'hiddens': hiddens, 'anything_else': ...}
"""
rank_zero_warn(m)
# don't allow EvalResult in the training_step
if isinstance(training_step_output, EvalResult):
raise MisconfigurationException(
"training_step cannot return EvalResult, " "use a dict or TrainResult instead"
)
training_step_output_for_epoch_end = copy(training_step_output)
training_step_output_for_epoch_end.detach()
return training_step_output_for_epoch_end
def optimizer_step(self, optimizer, opt_idx, batch_idx, train_step_and_backward_closure, *args, **kwargs):
model_ref = self.trainer.get_model()
is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
using_native_amp = self.trainer.amp_backend == AMPType.NATIVE
# native amp + lbfgs is a no go right now
if using_native_amp and is_lbfgs:
raise MisconfigurationException(
'native PyTorch amp and lbfgs are not compatible.'
' To request, please file a Github issue in PyTorch and tag @mcarilli')
# model hook
model_ref.optimizer_step(
epoch=self.trainer.current_epoch,
batch_idx=batch_idx,
optimizer=optimizer,
optimizer_idx=opt_idx,
optimizer_closure=train_step_and_backward_closure,
on_tpu=self.trainer.use_tpu and TPU_AVAILABLE,
using_native_amp=using_native_amp,
using_lbfgs=is_lbfgs,
*args,
**kwargs,
)
def on_before_zero_grad(self, optimizer):
self.trainer.call_hook('on_before_zero_grad', optimizer)
def track_and_norm_grad(self, optimizer):
# track gradient norms
grad_norm_dic = self._track_gradient_norm()
# clip gradients
self.trainer.accelerator_backend.clip_gradients(optimizer)
self._cur_grad_norm_dict = grad_norm_dic
def _track_gradient_norm(self):
grad_norm_dict = {}
if (self.trainer.global_step + 1) % self.trainer.log_every_n_steps == 0:
if float(self.trainer.track_grad_norm) > 0:
model = self.trainer.get_model()
grad_norm_dict = model.grad_norm(self.trainer.track_grad_norm)
return grad_norm_dict
def process_hiddens(self, opt_closure_result):
hiddens = opt_closure_result.hiddens
if isinstance(opt_closure_result.training_step_output, Result):
opt_closure_result.training_step_output_for_epoch_end.drop_hiddens()
return hiddens
def tbptt_split_batch(self, batch):
splits = [batch]
if self.trainer.truncated_bptt_steps is not None:
model_ref = self.trainer.get_model()
with self.trainer.profiler.profile("tbptt_split_batch"):
splits = model_ref.tbptt_split_batch(batch, self.trainer.truncated_bptt_steps)
return splits
def run_training_epoch(self):
# get model
model = self.trainer.get_model()
# modify dataloader if needed (ddp, etc...)
train_dataloader = self.trainer.accelerator_backend.process_dataloader(self.trainer.train_dataloader)
# track epoch output
epoch_output = [[] for _ in range(self.num_optimizers)]
# enable profiling for the dataloader
train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(train_dataloader)
dataloader_idx = 0
should_check_val = False
for batch_idx, (batch, is_last_batch) in train_dataloader:
self.trainer.batch_idx = batch_idx
# ------------------------------------
# TRAINING_STEP + TRAINING_STEP_END
# ------------------------------------
with self.trainer.profiler.profile("run_training_batch"):
batch_output = self.run_training_batch(batch, batch_idx, dataloader_idx)
# when returning -1 from train_step, we end epoch early
if batch_output.signal == -1:
break
# only track outputs when user implements training_epoch_end
# otherwise we will build up unnecessary memory
epoch_end_outputs = self.process_train_step_outputs(
batch_output.training_step_output_for_epoch_end,
self.early_stopping_accumulator,
self.checkpoint_accumulator,
)
# hook
# TODO: add outputs to batches
self.on_train_batch_end(epoch_output, epoch_end_outputs, batch, batch_idx, dataloader_idx)
# -----------------------------------------
# SAVE METRICS TO LOGGERS
# -----------------------------------------
self.trainer.logger_connector.log_train_step_metrics(batch_output)
# -----------------------------------------
# VALIDATE IF NEEDED + CHECKPOINT CALLBACK
# -----------------------------------------
should_check_val = self.should_check_val_fx(batch_idx, is_last_batch)
if should_check_val:
self.trainer.run_evaluation(test_mode=False)
# reset stage to train
self.trainer.logger_connector.set_stage("train")
# -----------------------------------------
# SAVE LOGGERS (ie: Tensorboard, etc...)
# -----------------------------------------
self.save_loggers_on_train_batch_end()
# update LR schedulers
monitor_metrics = deepcopy(self.trainer.logger_connector.callback_metrics)
self.update_train_loop_lr_schedulers(monitor_metrics=monitor_metrics)
self.trainer.checkpoint_connector.has_trained = True
# max steps reached, end training
if self.trainer.max_steps is not None and self.trainer.max_steps == self.trainer.global_step + 1:
accumulation_done = self._accumulated_batches_reached()
# Ensure accumulation across batches has completed before breaking loop
if accumulation_done:
break
# end epoch early
# stop when the flag is changed or we've gone past the amount
# requested in the batches
if self.trainer.should_stop:
break
self.trainer.total_batch_idx += 1
# stop epoch if we limited the number of training batches
if (batch_idx + 1) >= self.trainer.num_training_batches:
break
# progress global step according to grads progress
self.increment_accumulated_grad_global_step()
# epoch end hook
self.run_on_epoch_end_hook(epoch_output)
# log epoch metrics
self.trainer.logger_connector.log_train_epoch_end_metrics(
epoch_output,
self.checkpoint_accumulator,
self.early_stopping_accumulator,
self.num_optimizers
)
# when no val loop is present or fast-dev-run still need to call checkpoints
self.check_checkpoint_callback(not (should_check_val or is_overridden('validation_step', model)))
# increment the global step once
# progress global step according to grads progress
self.increment_accumulated_grad_global_step()
def run_training_batch(self, batch, batch_idx, dataloader_idx):
# track grad norms
grad_norm_dic = {}
# bookkeeping
using_results_obj = False
self.trainer.hiddens = None
# track all outputs across time and num of optimizers
batch_outputs = [[] for _ in range(len(self.get_optimizers_iterable()))]
if batch is None:
return AttributeDict(signal=0, grad_norm_dic=grad_norm_dic)
# hook
response = self.trainer.call_hook("on_batch_start")
if response == -1:
return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)
# hook
response = self.trainer.call_hook("on_train_batch_start", batch, batch_idx, dataloader_idx)
if response == -1:
return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)
# lightning module hook
splits = self.tbptt_split_batch(batch)
for split_idx, split_batch in enumerate(splits):
# create an iterable for optimizers and loop over them
for opt_idx, optimizer in self.prepare_optimizers():
# toggle model params + set info to logger_connector
self.run_train_split_start(split_idx, split_batch, opt_idx, optimizer)
if self.should_accumulate():
# For gradient accumulation
# -------------------
# calculate loss (train step + train step end)
# -------------------
# automatic_optimization=True: perform dpp sync only when performing optimizer_step
# automatic_optimization=False: don't block synchronization here
with self.block_ddp_sync_behaviour():
self.training_step_and_backward(
split_batch,
batch_idx,
opt_idx,
optimizer,
self.trainer.hiddens)
batch_outputs = self._process_closure_result(
batch_outputs=batch_outputs,
opt_idx=opt_idx,
)
# ------------------------------
# BACKWARD PASS
# ------------------------------
# gradient update with accumulated gradients
else:
if self.automatic_optimization:
def train_step_and_backward_closure():
result = self.training_step_and_backward(
split_batch,
batch_idx,
opt_idx,
optimizer,
self.trainer.hiddens
)
return None if result is None else result.loss
# optimizer step
self.optimizer_step(optimizer, opt_idx, batch_idx, train_step_and_backward_closure)
else:
self._curr_step_result = self.training_step(
split_batch,
batch_idx,
opt_idx,
self.trainer.hiddens
)
if self._curr_step_result is None:
# user decided to skip optimization
# make sure to zero grad.
continue
batch_outputs = self._process_closure_result(
batch_outputs=batch_outputs,
opt_idx=opt_idx,
)
# todo: Properly aggregate grad_norm accros opt_idx and split_idx
grad_norm_dic = self._cur_grad_norm_dict
self._cur_grad_norm_dict = None
# update running loss + reset accumulated loss
self.update_running_loss()
result = AttributeDict(
signal=0,
grad_norm_dic=grad_norm_dic,
training_step_output_for_epoch_end=batch_outputs,
)
return result
@contextmanager
def block_ddp_sync_behaviour(self):
"""
automatic_optimization = True
Blocks ddp sync gradients behaviour on backwards pass.
This is useful for skipping sync when accumulating gradients, reducing communication overhead
automatic_optimization = False
do not block ddp gradient sync when using manual optimization
as gradients are needed within the training step
Returns: context manager with sync behaviour off
"""
if self.trainer.accelerator_backend is not None and self.automatic_optimization:
yield self.trainer.accelerator_backend.block_ddp_plugin_sync_behaviour()
else:
yield None
def _process_closure_result(
self, batch_outputs: list, opt_idx: int
) -> list:
opt_closure_result = self._curr_step_result
if opt_closure_result is not None:
# cache metrics
self.trainer.logger_connector.cache_training_step_metrics(opt_closure_result)
# track hiddens
self.trainer.hiddens = self.process_hiddens(opt_closure_result)
# check if loss or model weights are nan
if self.trainer.terminate_on_nan:
self.trainer.detect_nan_tensors(opt_closure_result.loss)
# track all the outputs across all steps
batch_opt_idx = opt_idx if len(batch_outputs) > 1 else 0
batch_outputs[batch_opt_idx].append(opt_closure_result.training_step_output_for_epoch_end)
if self.automatic_optimization:
# track total loss for logging (avoid mem leaks)
self.accumulated_loss.append(opt_closure_result.loss)
self._curr_step_result = None
return batch_outputs
def training_step_and_backward(self, split_batch, batch_idx, opt_idx, optimizer, hiddens):
"""
wrap the forward step in a closure so second order methods work
"""
with self.trainer.profiler.profile("training_step_and_backward"):
# lightning module hook
result = self.training_step(split_batch, batch_idx, opt_idx, hiddens)
self._curr_step_result = result
if result is None:
self.warning_cache.warn("training_step returned None if it was on purpose, ignore this warning...")
return None
if self.trainer.train_loop.automatic_optimization:
# backward pass
with self.trainer.profiler.profile("model_backward"):
self.backward(result, optimizer, opt_idx)
# hook - call this hook only
# when gradients have finished to accumulate
if not self.should_accumulate():
self.on_after_backward(result.training_step_output, batch_idx, result.loss)
# check if loss or model weights are nan
if self.trainer.terminate_on_nan:
self.trainer.detect_nan_tensors(result.loss)
return result
def backward(self, result, optimizer, opt_idx, *args, **kwargs):
self.trainer.dev_debugger.track_event("backward_call")
# backward can be called manually in the training loop
if isinstance(result, torch.Tensor):
self.trainer.accelerator_backend.backward(result, optimizer, opt_idx, *args, **kwargs)
else:
result.closure_loss = self.trainer.accelerator_backend.backward(
result.closure_loss, optimizer, opt_idx, *args, **kwargs
)
if not self.should_accumulate():
# track gradients
self.track_and_norm_grad(optimizer=optimizer)
def update_train_loop_lr_schedulers(self, monitor_metrics=None):
num_accumulated_batches_reached = self._accumulated_batches_reached()
num_training_batches_reached = self._num_training_batches_reached()
if num_accumulated_batches_reached or num_training_batches_reached:
# update lr
self.trainer.optimizer_connector.update_learning_rates(interval="step", monitor_metrics=monitor_metrics)
def run_on_epoch_end_hook(self, epoch_output):
# inform logger the batch loop has finished
self.trainer.logger_connector.on_train_epoch_end()
self.trainer.call_hook('on_epoch_end')
self.trainer.call_hook('on_train_epoch_end', epoch_output)
def increment_accumulated_grad_global_step(self):
num_accumulated_batches_reached = self._accumulated_batches_reached()
num_training_batches_reached = self._num_training_batches_reached()
# progress global step according to grads progress
if num_accumulated_batches_reached or num_training_batches_reached:
self.trainer.global_step += 1
def _accumulated_batches_reached(self):
return (self.trainer.batch_idx + 1) % self.trainer.accumulate_grad_batches == 0
def _num_training_batches_reached(self):
return (self.trainer.batch_idx + 1) == self.trainer.num_training_batches
def should_accumulate(self):
# checks if backward or backward + optimizer step (via closure)
accumulation_done = self._accumulated_batches_reached()
is_final_batch = self._num_training_batches_reached()
return not (accumulation_done or is_final_batch)
def should_check_val_fx(self, batch_idx, is_last_batch):
# decide if we should run validation
is_val_check_batch = (batch_idx + 1) % self.trainer.val_check_batch == 0
is_val_check_epoch = (self.trainer.current_epoch + 1) % self.trainer.check_val_every_n_epoch == 0
can_check_val = self.trainer.enable_validation and is_val_check_epoch
should_check_val = is_val_check_batch or self.trainer.should_stop
is_last_batch_for_infinite_dataset = is_last_batch and self.trainer.val_check_batch == float("inf")
should_check_val = can_check_val and (should_check_val or is_last_batch_for_infinite_dataset)
return should_check_val
def build_train_args(self, batch, batch_idx, opt_idx, hiddens):
# enable not needing to add opt_idx to training_step
args = [batch, batch_idx]
if len(self.trainer.optimizers) > 1:
if self.trainer.has_arg("training_step", "optimizer_idx"):
args.append(opt_idx)
else:
num_opts = len(self.trainer.optimizers)
raise ValueError(
f"Your LightningModule defines {num_opts} optimizers but "
f'training_step is missing the "optimizer_idx" argument.'
)
# pass hiddens if using tbptt
if self.trainer.truncated_bptt_steps is not None:
args.append(hiddens)
return args
def save_loggers_on_train_batch_end(self):
# when loggers should save to disk
should_flush_logs = self.trainer.logger_connector.should_flush_logs
if should_flush_logs or self.trainer.fast_dev_run is True:
if self.trainer.is_global_zero and self.trainer.logger is not None:
self.trainer.logger.save()
def process_train_step_outputs(self, all_train_step_outputs, early_stopping_accumulator, checkpoint_accumulator):
"""
Figure out what needs to be tracked/logged at the end of the epoch
"""
# the training step outputs a list per optimizer. The list contains the outputs at each time step
# when no TBPTT is used, then the list has 1 item per batch
# when TBPTT IS used, then the list has n items (1 per time step)
epoch_end_outputs = []
for optimizer_idx_outputs in all_train_step_outputs:
# extract one representative sample from each time step (1 if no tbptt) and 0th optimizer
if len(optimizer_idx_outputs) == 0:
continue
sample_output = optimizer_idx_outputs[-1]
# pull out callback info if available (ie: Results object)
if isinstance(sample_output, dict) and "early_stop_on" in sample_output:
early_stopping_accumulator.accumulate(sample_output["early_stop_on"])
if isinstance(sample_output, dict) and "checkpoint_on" in sample_output:
checkpoint_accumulator.accumulate(sample_output["checkpoint_on"])
# decide if we need to reduce at the end of the epoch automatically
auto_reduce_tng_result = isinstance(sample_output, Result) and sample_output.should_reduce_on_epoch_end
# only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end
if is_overridden("training_epoch_end", model=self.trainer.get_model()) or auto_reduce_tng_result:
epoch_end_outputs.append(optimizer_idx_outputs)
return epoch_end_outputs
def prepare_optimizers(self):
# in manual optimization we loop over all optimizers at once
optimizers = self.get_optimizers_iterable()
if not self.automatic_optimization:
optimizers = [optimizers[0]]
return optimizers
def run_train_split_start(self, split_idx, split_batch, opt_idx, optimizer):
# set split_idx to trainer for tracking
self.trainer.split_idx = split_idx
# make sure only the gradients of the current optimizer's parameters are calculated
# in the training step to prevent dangling gradients in multiple-optimizer setup.
if self.automatic_optimization and len(self.trainer.optimizers) > 1:
model = self.trainer.get_model()
model.toggle_optimizer(optimizer, opt_idx)
# use to track metrics internally
self.trainer.logger_connector.on_train_split_start(split_idx, opt_idx, split_batch)
def update_running_loss(self):
accumulated_loss = self.accumulated_loss.mean()
if accumulated_loss is not None:
# calculate running loss for display
self.running_loss.append(self.accumulated_loss.mean() * self.trainer.accumulate_grad_batches)
# reset for next set of accumulated grads
self.accumulated_loss.reset()