lightning/tests/tests_pytorch/loops/test_all.py

110 lines
3.9 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from lightning.pytorch import Callback, Trainer
from lightning.pytorch.demos.boring_classes import BoringModel
from tests_pytorch.helpers.runif import RunIf
def _device_check_helper(batch_device, module_device):
assert batch_device.type == module_device.type
if batch_device.index is not None and module_device.index is not None:
assert batch_device.index == module_device.index
else:
# devices with index None are the same as with index 0
assert batch_device.index in (0, None)
assert module_device.index in (0, None)
class BatchHookObserverCallback(Callback):
def on_train_batch_start(self, trainer, pl_module, batch, *_):
_device_check_helper(batch.device, pl_module.device)
def on_train_batch_end(self, trainer, pl_module, outputs, batch, *_):
_device_check_helper(batch.device, pl_module.device)
def on_validation_batch_start(self, trainer, pl_module, batch, *_):
_device_check_helper(batch.device, pl_module.device)
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, *_):
_device_check_helper(batch.device, pl_module.device)
def on_test_batch_start(self, trainer, pl_module, batch, *_):
_device_check_helper(batch.device, pl_module.device)
def on_test_batch_end(self, trainer, pl_module, outputs, batch, *_):
_device_check_helper(batch.device, pl_module.device)
def on_predict_batch_start(self, trainer, pl_module, batch, *_):
_device_check_helper(batch.device, pl_module.device)
def on_predict_batch_end(self, trainer, pl_module, outputs, batch, *_):
_device_check_helper(batch.device, pl_module.device)
class BatchHookObserverModel(BoringModel):
def on_train_batch_start(self, batch, *_):
_device_check_helper(batch.device, self.device)
def on_train_batch_end(self, outputs, batch, *_):
_device_check_helper(batch.device, self.device)
def on_validation_batch_start(self, batch, *_):
_device_check_helper(batch.device, self.device)
def on_validation_batch_end(self, outputs, batch, *_):
_device_check_helper(batch.device, self.device)
def on_test_batch_start(self, batch, *_):
_device_check_helper(batch.device, self.device)
def on_test_batch_end(self, outputs, batch, *_):
_device_check_helper(batch.device, self.device)
def on_predict_batch_start(self, batch, *_):
_device_check_helper(batch.device, self.device)
def on_predict_batch_end(self, outputs, batch, *_):
_device_check_helper(batch.device, self.device)
@pytest.mark.parametrize(
"accelerator",
[
pytest.param("gpu", marks=RunIf(min_cuda_gpus=1)),
pytest.param("mps", marks=RunIf(mps=True)),
],
)
def test_callback_batch_on_device(tmpdir, accelerator):
"""Test that the batch object sent to the on_*_batch_start/end hooks is on the right device."""
batch_callback = BatchHookObserverCallback()
model = BatchHookObserverModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=1,
limit_train_batches=1,
limit_val_batches=1,
limit_test_batches=1,
limit_predict_batches=1,
accelerator=accelerator,
devices=1,
callbacks=[batch_callback],
)
trainer.fit(model)
trainer.validate(model)
trainer.test(model)
trainer.predict(model)