130 lines
5.1 KiB
Python
130 lines
5.1 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from unittest.mock import ANY, Mock, call
|
|
|
|
import pytest
|
|
from lightning.pytorch import Trainer
|
|
from lightning.pytorch.callbacks import BasePredictionWriter
|
|
from lightning.pytorch.demos.boring_classes import BoringModel, RandomDataset
|
|
from lightning.pytorch.utilities.exceptions import MisconfigurationException
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
|
class DummyPredictionWriter(BasePredictionWriter):
|
|
def write_on_batch_end(self, *_, **__):
|
|
pass
|
|
|
|
def write_on_epoch_end(self, *_, **__):
|
|
pass
|
|
|
|
|
|
def test_prediction_writer_invalid_write_interval():
|
|
"""Test that configuring an unknown interval name raises an error."""
|
|
with pytest.raises(MisconfigurationException, match=r"`write_interval` should be one of \['batch"):
|
|
DummyPredictionWriter("something")
|
|
|
|
|
|
def test_prediction_writer_hook_call_intervals():
|
|
"""Test that the `write_on_batch_end` and `write_on_epoch_end` hooks get invoked based on the defined interval."""
|
|
DummyPredictionWriter.write_on_batch_end = Mock()
|
|
DummyPredictionWriter.write_on_epoch_end = Mock()
|
|
|
|
dataloader = DataLoader(RandomDataset(32, 64))
|
|
|
|
model = BoringModel()
|
|
cb = DummyPredictionWriter("batch_and_epoch")
|
|
trainer = Trainer(limit_predict_batches=4, callbacks=cb)
|
|
results = trainer.predict(model, dataloaders=dataloader)
|
|
assert len(results) == 4
|
|
assert cb.write_on_batch_end.call_count == 4
|
|
assert cb.write_on_epoch_end.call_count == 1
|
|
|
|
DummyPredictionWriter.write_on_batch_end.reset_mock()
|
|
DummyPredictionWriter.write_on_epoch_end.reset_mock()
|
|
|
|
cb = DummyPredictionWriter("batch_and_epoch")
|
|
trainer = Trainer(limit_predict_batches=4, callbacks=cb)
|
|
trainer.predict(model, dataloaders=dataloader, return_predictions=False)
|
|
assert cb.write_on_batch_end.call_count == 4
|
|
assert cb.write_on_epoch_end.call_count == 1
|
|
|
|
DummyPredictionWriter.write_on_batch_end.reset_mock()
|
|
DummyPredictionWriter.write_on_epoch_end.reset_mock()
|
|
|
|
cb = DummyPredictionWriter("batch")
|
|
trainer = Trainer(limit_predict_batches=4, callbacks=cb)
|
|
trainer.predict(model, dataloaders=dataloader, return_predictions=False)
|
|
assert cb.write_on_batch_end.call_count == 4
|
|
assert cb.write_on_epoch_end.call_count == 0
|
|
|
|
DummyPredictionWriter.write_on_batch_end.reset_mock()
|
|
DummyPredictionWriter.write_on_epoch_end.reset_mock()
|
|
|
|
cb = DummyPredictionWriter("epoch")
|
|
trainer = Trainer(limit_predict_batches=4, callbacks=cb)
|
|
trainer.predict(model, dataloaders=dataloader, return_predictions=False)
|
|
assert cb.write_on_batch_end.call_count == 0
|
|
assert cb.write_on_epoch_end.call_count == 1
|
|
|
|
|
|
@pytest.mark.parametrize("num_workers", [0, 2])
|
|
def test_prediction_writer_batch_indices(num_workers):
|
|
DummyPredictionWriter.write_on_batch_end = Mock()
|
|
DummyPredictionWriter.write_on_epoch_end = Mock()
|
|
|
|
dataloader = DataLoader(RandomDataset(32, 64), batch_size=4, num_workers=num_workers)
|
|
model = BoringModel()
|
|
writer = DummyPredictionWriter("batch_and_epoch")
|
|
trainer = Trainer(limit_predict_batches=4, callbacks=writer)
|
|
trainer.predict(model, dataloaders=dataloader)
|
|
|
|
writer.write_on_batch_end.assert_has_calls(
|
|
[
|
|
call(trainer, model, ANY, [0, 1, 2, 3], ANY, 0, 0),
|
|
call(trainer, model, ANY, [4, 5, 6, 7], ANY, 1, 0),
|
|
call(trainer, model, ANY, [8, 9, 10, 11], ANY, 2, 0),
|
|
call(trainer, model, ANY, [12, 13, 14, 15], ANY, 3, 0),
|
|
]
|
|
)
|
|
|
|
writer.write_on_epoch_end.assert_has_calls(
|
|
[
|
|
call(trainer, model, ANY, [[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]]),
|
|
]
|
|
)
|
|
|
|
|
|
def test_batch_level_batch_indices():
|
|
"""Test that batch_indices are returned when `return_predictions=False`."""
|
|
DummyPredictionWriter.write_on_batch_end = Mock()
|
|
|
|
class CustomBoringModel(BoringModel):
|
|
def on_predict_epoch_end(self, *args, **kwargs):
|
|
assert self.trainer.predict_loop.epoch_batch_indices == [[]]
|
|
|
|
writer = DummyPredictionWriter("batch")
|
|
model = CustomBoringModel()
|
|
dataloader = DataLoader(RandomDataset(32, 64), batch_size=4)
|
|
trainer = Trainer(limit_predict_batches=4, callbacks=writer)
|
|
trainer.predict(model, dataloaders=dataloader, return_predictions=False)
|
|
|
|
writer.write_on_batch_end.assert_has_calls(
|
|
[
|
|
call(trainer, model, ANY, [0, 1, 2, 3], ANY, 0, 0),
|
|
call(trainer, model, ANY, [4, 5, 6, 7], ANY, 1, 0),
|
|
call(trainer, model, ANY, [8, 9, 10, 11], ANY, 2, 0),
|
|
call(trainer, model, ANY, [12, 13, 14, 15], ANY, 3, 0),
|
|
]
|
|
)
|