lightning/pytorch_lightning/accelerators/tpu_backend.py

164 lines
5.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
import torch.multiprocessing as mp
from pytorch_lightning import _logger as log
from pytorch_lightning.core import LightningModule
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only, rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
try:
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
except ImportError:
XLA_AVAILABLE = False
else:
XLA_AVAILABLE = True
class TPUBackend(object):
def __init__(self, trainer):
self.trainer = trainer
self.start_method = None
self.mp_queue = None
def setup(self):
rank_zero_info(f'training on {self.trainer.tpu_cores} TPU cores')
if not XLA_AVAILABLE:
raise MisconfigurationException('PyTorch XLA not installed.')
# see: https://discuss.pytorch.org/t/segfault-with-multiprocessing-queue/81292/2
self.start_method = 'fork'
# pass in a state q
smp = mp.get_context(self.start_method)
self.mp_queue = smp.SimpleQueue()
def teardown(self, model):
# restore main state with best weights
best_path = self.mp_queue.get()
results = self.mp_queue.get()
last_path = self.mp_queue.get()
# transfer back the best path to the trainer
self.trainer.checkpoint_callback.best_model_path = best_path
# todo, pass also bets score
# load last weights
if last_path and not self.trainer.testing:
ckpt = torch.load(last_path, map_location=lambda storage, loc: storage)
model.load_state_dict(ckpt)
self.trainer.model = model
# when training completes, load the weights back in main process
self.__load_weights_on_main_process()
return results
def train(self, model: LightningModule):
self.trainer.model = model
# train
if self.trainer.tpu_id is not None:
self.tpu_train_in_process(self.trainer.tpu_id, model, self.trainer, self.mp_queue)
else:
xmp.spawn(
self.tpu_train_in_process,
args=(model, self.trainer, self.mp_queue),
nprocs=self.trainer.tpu_cores,
start_method=self.start_method
)
def __load_weights_on_main_process(self):
model = self.trainer.model
# load weights if not interrupted
if self.trainer.on_colab_kaggle and not self.trainer.testing:
self.trainer.load_spawn_weights(model)
self.trainer.model = model
def tpu_train_in_process(self, tpu_core_idx: int, model: LightningModule, trainer=None, mp_queue=None):
"""
Here we are inside each individual process
"""
if not trainer:
trainer = self.trainer
trainer.call_setup_hook(model)
# setup TPU training
self.__setup_tpu_training(model, trainer)
# Run the pretrain routine
results = trainer.run_pretrain_routine(model)
# save weights at the end of training
self.__save_end_of_training_weights(model, trainer)
# persist info in spawn
trainer.transfer_distrib_spawn_state_on_fit_end(model, mp_queue, results)
def __save_end_of_training_weights(self, model: LightningModule, trainer):
# when training ends on these platforms dump weights to get out of the main process
if trainer.on_colab_kaggle:
rank_zero_warn('cleaning up... please do not interrupt')
trainer.save_spawn_weights(model)
def __setup_tpu_training(self, model: LightningModule, trainer):
# use the default device from the process
# tpu_device = xm.xla_device()
# if given an ordinal device, use this as the device
if trainer.tpu_id is not None:
tpu_device = xm.xla_device(trainer.tpu_id)
else:
tpu_device = xm.xla_device()
# track the device and move model to it
trainer._device = tpu_device
model.to(trainer._device)
# get the appropriate tpu ranks
trainer.tpu_local_core_rank = xm.get_local_ordinal()
trainer.tpu_global_core_rank = xm.get_ordinal()
# avoid duplicating progress bar
if trainer.tpu_global_core_rank != 0 and trainer.progress_bar_callback is not None:
trainer.progress_bar_callback.disable()
trainer.global_rank = trainer.tpu_local_core_rank
rank_zero_only.rank = trainer.global_rank
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
optimizers, lr_schedulers, optimizer_frequencies = trainer.init_optimizers(model)
trainer.optimizers = optimizers
trainer.lr_schedulers = lr_schedulers
trainer.optimizer_frequencies = optimizer_frequencies
# init 16 bit for TPU
if trainer.precision == 16:
os.environ['XLA_USE_BF16'] = str(1)
log.info(f'INIT TPU local core: {trainer.tpu_local_core_rank},'
f' global rank: {trainer.tpu_global_core_rank}'
f' with XLA_USE_BF16={os.environ.get("XLA_USE_BF16")}')