lightning/tests/trainer/connectors/test_callback_connector.py

142 lines
5.3 KiB
Python

import logging
from unittest.mock import Mock
import torch
from pytorch_lightning import Callback, Trainer
from pytorch_lightning.callbacks import (
EarlyStopping,
GradientAccumulationScheduler,
LearningRateMonitor,
ModelCheckpoint,
ProgressBar,
)
from pytorch_lightning.trainer.connectors.callback_connector import CallbackConnector
from tests.helpers import BoringModel
def test_checkpoint_callbacks_are_last(tmpdir):
""" Test that checkpoint callbacks always get moved to the end of the list, with preserved order. """
checkpoint1 = ModelCheckpoint(tmpdir)
checkpoint2 = ModelCheckpoint(tmpdir)
early_stopping = EarlyStopping()
lr_monitor = LearningRateMonitor()
progress_bar = ProgressBar()
# no model callbacks
model = Mock()
model.configure_callbacks.return_value = []
trainer = Trainer(callbacks=[checkpoint1, progress_bar, lr_monitor, checkpoint2])
cb_connector = CallbackConnector(trainer)
cb_connector._attach_model_callbacks(model, trainer)
assert trainer.callbacks == [progress_bar, lr_monitor, checkpoint1, checkpoint2]
# with model-specific callbacks that substitute ones in Trainer
model = Mock()
model.configure_callbacks.return_value = [checkpoint1, early_stopping, checkpoint2]
trainer = Trainer(callbacks=[progress_bar, lr_monitor, ModelCheckpoint(tmpdir)])
cb_connector = CallbackConnector(trainer)
cb_connector._attach_model_callbacks(model, trainer)
assert trainer.callbacks == [progress_bar, lr_monitor, early_stopping, checkpoint1, checkpoint2]
class StatefulCallback0(Callback):
def on_save_checkpoint(self, *args):
return {"content0": 0}
class StatefulCallback1(Callback):
def on_save_checkpoint(self, *args):
return {"content1": 1}
def test_all_callback_states_saved_before_checkpoint_callback(tmpdir):
""" Test that all callback states get saved even if the ModelCheckpoint is not given as last. """
callback0 = StatefulCallback0()
callback1 = StatefulCallback1()
checkpoint_callback = ModelCheckpoint(dirpath=tmpdir, filename="all_states")
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=1,
limit_val_batches=1,
callbacks=[callback0, checkpoint_callback, callback1]
)
trainer.fit(model)
ckpt = torch.load(str(tmpdir / "all_states.ckpt"))
state0 = ckpt["callbacks"][type(callback0)]
state1 = ckpt["callbacks"][type(callback1)]
assert "content0" in state0 and state0["content0"] == 0
assert "content1" in state1 and state1["content1"] == 1
assert type(checkpoint_callback) in ckpt["callbacks"]
def test_attach_model_callbacks():
""" Test that the callbacks defined in the model and through Trainer get merged correctly. """
def assert_composition(trainer_callbacks, model_callbacks, expected):
model = Mock()
model.configure_callbacks.return_value = model_callbacks
trainer = Trainer(checkpoint_callback=False, progress_bar_refresh_rate=0, callbacks=trainer_callbacks)
cb_connector = CallbackConnector(trainer)
cb_connector._attach_model_callbacks(model, trainer)
assert trainer.callbacks == expected
early_stopping = EarlyStopping()
progress_bar = ProgressBar()
lr_monitor = LearningRateMonitor()
grad_accumulation = GradientAccumulationScheduler({1: 1})
# no callbacks
assert_composition(trainer_callbacks=[], model_callbacks=[], expected=[])
# callbacks of different types
assert_composition(
trainer_callbacks=[early_stopping], model_callbacks=[progress_bar], expected=[early_stopping, progress_bar]
)
# same callback type twice, different instance
assert_composition(
trainer_callbacks=[progress_bar, EarlyStopping()],
model_callbacks=[early_stopping],
expected=[progress_bar, early_stopping]
)
# multiple callbacks of the same type in trainer
assert_composition(
trainer_callbacks=[LearningRateMonitor(),
EarlyStopping(),
LearningRateMonitor(),
EarlyStopping()],
model_callbacks=[early_stopping, lr_monitor],
expected=[early_stopping, lr_monitor]
)
# multiple callbacks of the same type, in both trainer and model
assert_composition(
trainer_callbacks=[
LearningRateMonitor(), progress_bar,
EarlyStopping(),
LearningRateMonitor(),
EarlyStopping()
],
model_callbacks=[early_stopping, lr_monitor, grad_accumulation, early_stopping],
expected=[progress_bar, early_stopping, lr_monitor, grad_accumulation, early_stopping]
)
def test_attach_model_callbacks_override_info(caplog):
""" Test that the logs contain the info about overriding callbacks returned by configure_callbacks. """
model = Mock()
model.configure_callbacks.return_value = [LearningRateMonitor(), EarlyStopping()]
trainer = Trainer(checkpoint_callback=False, callbacks=[EarlyStopping(), LearningRateMonitor(), ProgressBar()])
cb_connector = CallbackConnector(trainer)
with caplog.at_level(logging.INFO):
cb_connector._attach_model_callbacks(model, trainer)
assert "existing callbacks passed to Trainer: EarlyStopping, LearningRateMonitor" in caplog.text