lightning/docs/source-fabric/fundamentals/launch.rst

244 lines
7.1 KiB
ReStructuredText

###########################
Launch distributed training
###########################
To run your code distributed across many devices and many machines, you need to do two things:
1. Configure Fabric with the number of devices and number of machines you want to use
2. Launch your code in multiple processes
----
*************
Simple Launch
*************
.. video:: https://pl-public-data.s3.amazonaws.com/assets_lightning/fabric/animations/launch.mp4
:width: 800
:autoplay:
:loop:
:muted:
:nocontrols:
You can configure and launch processes on your machine directly with Fabric's :meth:`~lightning.fabric.fabric.Fabric.launch` method:
.. code-block:: python
# train.py
...
# Configure accelerator, devices, num_nodes, etc.
fabric = Fabric(devices=4, ...)
# This launches itself into multiple processes
fabric.launch()
In the command line, you run this like any other Python script:
.. code-block:: bash
python train.py
This is the recommended way for running on a single machine and is the most convenient method for development and debugging.
It is also possible to use Fabric in a Jupyter notebook (including Google Colab, Kaggle, etc.) and launch multiple processes there.
You can learn more about it :ref:`here <Fabric in Notebooks>`.
----
*******************
Launch with the CLI
*******************
.. video:: https://pl-public-data.s3.amazonaws.com/assets_lightning/fabric/animations/launch-cli.mp4
:width: 800
:autoplay:
:loop:
:muted:
:nocontrols:
An alternative way to launch your Python script in multiple processes is to use the dedicated command line interface (CLI):
.. code-block:: bash
fabric run path/to/your/script.py
This is essentially the same as running ``python path/to/your/script.py``, but it also lets you configure the following settings externally without changing your code:
- ``--accelerator``: The accelerator to use
- ``--devices``: The number of devices to use (per machine)
- ``--num_nodes``: The number of machines (nodes) to use
- ``--precision``: Which type of precision to use
- ``--strategy``: The strategy (communication layer between processes)
.. code-block:: bash
fabric run --help
Usage: fabric run [OPTIONS] SCRIPT [SCRIPT_ARGS]...
Run a Lightning Fabric script.
SCRIPT is the path to the Python script with the code to run. The script
must contain a Fabric object.
SCRIPT_ARGS are the remaining arguments that you can pass to the script
itself and are expected to be parsed there.
Options:
--accelerator [cpu|gpu|cuda|mps|tpu]
The hardware accelerator to run on.
--strategy [ddp|dp|deepspeed] Strategy for how to run across multiple
devices.
--devices TEXT Number of devices to run on (``int``), which
devices to run on (``list`` or ``str``), or
``'auto'``. The value applies per node.
--num-nodes, --num_nodes INTEGER
Number of machines (nodes) for distributed
execution.
--node-rank, --node_rank INTEGER
The index of the machine (node) this command
gets started on. Must be a number in the
range 0, ..., num_nodes - 1.
--main-address, --main_address TEXT
The hostname or IP address of the main
machine (usually the one with node_rank =
0).
--main-port, --main_port INTEGER
The main port to connect to the main
machine.
--precision [16-mixed|bf16-mixed|32-true|64-true|64|32|16|bf16]
Double precision (``64-true`` or ``64``),
full precision (``32-true`` or ``32``), half
precision (``16-mixed`` or ``16``) or
bfloat16 precision (``bf16-mixed`` or
``bf16``)
--help Show this message and exit.
Here is how you run DDP with 8 GPUs and `torch.bfloat16 <https://pytorch.org/docs/1.10.0/generated/torch.Tensor.bfloat16.html>`_ precision:
.. code-block:: bash
fabric run ./path/to/train.py \
--strategy=ddp \
--devices=8 \
--accelerator=cuda \
--precision="bf16"
Or `DeepSpeed Zero3 <https://www.deepspeed.ai/2021/03/07/zero3-offload.html>`_ with mixed precision:
.. code-block:: bash
fabric run ./path/to/train.py \
--strategy=deepspeed_stage_3 \
--devices=8 \
--accelerator=cuda \
--precision=16
:class:`~lightning.fabric.fabric.Fabric` can also figure it out automatically for you!
.. code-block:: bash
fabric run ./path/to/train.py \
--devices=auto \
--accelerator=auto \
--precision=16
----
.. _Fabric Cluster:
*******************
Launch on a Cluster
*******************
Fabric enables distributed training across multiple machines in several ways.
Choose from the following options based on your expertise level and available infrastructure.
.. raw:: html
<div class="display-card-container">
<div class="row">
.. displayitem::
:header: Run single or multi-node on Lightning Studios
:description: The easiest way to scale models in the cloud. No infrastructure setup required.
:col_css: col-md-4
:button_link: ../guide/multi_node/cloud.html
:height: 160
:tag: basic
.. displayitem::
:header: SLURM Managed Cluster
:description: Most popular for academic and private enterprise clusters.
:col_css: col-md-4
:button_link: ../guide/multi_node/slurm.html
:height: 160
:tag: intermediate
.. displayitem::
:header: Bare Bones Cluster
:description: Train across machines on a network using `torchrun`.
:col_css: col-md-4
:button_link: ../guide/multi_node/barebones.html
:height: 160
:tag: advanced
.. displayitem::
:header: Other Cluster Environments
:description: MPI, LSF, Kubeflow
:col_css: col-md-4
:button_link: ../guide/multi_node/other.html
:height: 160
:tag: advanced
.. raw:: html
</div>
</div>
----
**********
Next steps
**********
.. raw:: html
<div class="display-card-container">
<div class="row">
.. displayitem::
:header: Mixed Precision Training
:description: Save memory and speed up training using mixed precision
:col_css: col-md-4
:button_link: ../fundamentals/precision.html
:height: 160
:tag: basic
.. displayitem::
:header: Distributed Communication
:description: Learn all about communication primitives for distributed operation. Gather, reduce, broadcast, etc.
:button_link: ../advanced/distributed_communication.html
:col_css: col-md-4
:height: 160
:tag: advanced
.. raw:: html
</div>
</div>