lightning/pytorch_lightning/tuner/batch_size_scaling.py

273 lines
11 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import logging
import os
import uuid
from typing import Optional, Tuple
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.loggers.base import DummyLogger
from pytorch_lightning.utilities import rank_zero_warn
from pytorch_lightning.utilities.cloud_io import get_filesystem
from pytorch_lightning.utilities.data import has_len_all_ranks
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.memory import garbage_collection_cuda, is_oom_error
from pytorch_lightning.utilities.parsing import lightning_getattr, lightning_hasattr, lightning_setattr
log = logging.getLogger(__name__)
def scale_batch_size(
trainer: "pl.Trainer",
model: "pl.LightningModule",
mode: str = "power",
steps_per_trial: int = 3,
init_val: int = 2,
max_trials: int = 25,
batch_arg_name: str = "batch_size",
) -> Optional[int]:
"""See :meth:`~pytorch_lightning.tuner.tuning.Tuner.scale_batch_size`"""
if trainer.fast_dev_run:
rank_zero_warn("Skipping batch size scaler since fast_dev_run is enabled.", UserWarning)
return
if not lightning_hasattr(model, batch_arg_name):
raise MisconfigurationException(f"Field {batch_arg_name} not found in both `model` and `model.hparams`")
if hasattr(model, batch_arg_name) and hasattr(model, "hparams") and batch_arg_name in model.hparams:
rank_zero_warn(
f"Field `model.{batch_arg_name}` and `model.hparams.{batch_arg_name}` are mutually exclusive!"
f" `model.{batch_arg_name}` will be used as the initial batch size for scaling."
" If this is not the intended behavior, please remove either one."
)
if not trainer._data_connector._train_dataloader_source.is_module():
raise MisconfigurationException(
"The batch scaling feature cannot be used with dataloaders passed directly to `.fit()`."
" Please disable the feature or incorporate the dataloader into the model."
)
# Arguments we adjust during the batch size finder, save for restoring
__scale_batch_dump_params(trainer)
# Set to values that are required by the algorithm
__scale_batch_reset_params(trainer, model, steps_per_trial)
# Save initial model, that is loaded after batch size is found
save_path = os.path.join(trainer.default_root_dir, f"scale_batch_size_temp_model_{uuid.uuid4()}.ckpt")
trainer.save_checkpoint(str(save_path))
if trainer.progress_bar_callback:
trainer.progress_bar_callback.disable()
# Initially we just double in size until an OOM is encountered
new_size, _ = _adjust_batch_size(trainer, batch_arg_name, value=init_val) # initially set to init_val
if mode == "power":
new_size = _run_power_scaling(trainer, model, new_size, batch_arg_name, max_trials)
elif mode == "binsearch":
new_size = _run_binsearch_scaling(trainer, model, new_size, batch_arg_name, max_trials)
else:
raise ValueError("mode in method `scale_batch_size` could either be `power` or `binsearch`")
garbage_collection_cuda()
log.info(f"Finished batch size finder, will continue with full run using batch size {new_size}")
# Restore initial state of model
if trainer.is_global_zero:
trainer.checkpoint_connector.restore(str(save_path))
fs = get_filesystem(str(save_path))
if fs.exists(save_path):
fs.rm(save_path)
# Finish by resetting variables so trainer is ready to fit model
__scale_batch_restore_params(trainer)
if trainer.progress_bar_callback:
trainer.progress_bar_callback.enable()
return new_size
def __scale_batch_dump_params(trainer: "pl.Trainer") -> None:
# Prevent going into infinite loop
trainer.__dumped_params = {
"auto_lr_find": trainer.auto_lr_find,
"current_epoch": trainer.current_epoch,
"global_step": trainer.global_step,
"max_steps": trainer.max_steps,
"weights_summary": trainer.weights_summary,
"logger": trainer.logger,
"callbacks": trainer.callbacks,
"checkpoint_callback": trainer.checkpoint_callback,
"auto_scale_batch_size": trainer.auto_scale_batch_size,
"limit_train_batches": trainer.limit_train_batches,
"model": trainer.model,
}
def __scale_batch_reset_params(trainer: "pl.Trainer", model: "pl.LightningModule", steps_per_trial: int) -> None:
trainer.auto_scale_batch_size = None # prevent recursion
trainer.auto_lr_find = False # avoid lr find being called multiple times
trainer.fit_loop.current_epoch = 0
trainer.fit_loop.max_steps = steps_per_trial # take few steps
trainer.weights_summary = None # not needed before full run
trainer.logger = DummyLogger() if trainer.logger is not None else None
trainer.callbacks = [] # not needed before full run
trainer.limit_train_batches = 1.0
trainer.optimizers, trainer.lr_schedulers = [], [] # required for saving
trainer.model = model # required for saving
def __scale_batch_restore_params(trainer: "pl.Trainer") -> None:
trainer.auto_lr_find = trainer.__dumped_params["auto_lr_find"]
trainer.fit_loop.current_epoch = trainer.__dumped_params["current_epoch"]
trainer.fit_loop.global_step = trainer.__dumped_params["global_step"]
trainer.fit_loop.max_steps = trainer.__dumped_params["max_steps"]
trainer.weights_summary = trainer.__dumped_params["weights_summary"]
trainer.logger = trainer.__dumped_params["logger"]
trainer.callbacks = trainer.__dumped_params["callbacks"]
trainer.auto_scale_batch_size = trainer.__dumped_params["auto_scale_batch_size"]
trainer.limit_train_batches = trainer.__dumped_params["limit_train_batches"]
trainer.model = trainer.__dumped_params["model"]
del trainer.__dumped_params
def _run_power_scaling(
trainer: "pl.Trainer", model: "pl.LightningModule", new_size: int, batch_arg_name: str, max_trials: int
) -> int:
"""Batch scaling mode where the size is doubled at each iteration until an OOM error is encountered."""
for _ in range(max_trials):
garbage_collection_cuda()
trainer.fit_loop.global_step = 0 # reset after each try
try:
# Try fit
trainer.tuner._run(model)
# Double in size
new_size, changed = _adjust_batch_size(trainer, batch_arg_name, factor=2.0, desc="succeeded")
except RuntimeError as exception:
# Only these errors should trigger an adjustment
if is_oom_error(exception):
# If we fail in power mode, half the size and return
garbage_collection_cuda()
new_size, _ = _adjust_batch_size(trainer, batch_arg_name, factor=0.5, desc="failed")
break
else:
raise # some other error not memory related
if changed:
# Force the train dataloader to reset as the batch size has changed
trainer.reset_train_dataloader(model)
trainer.reset_val_dataloader(model)
else:
break
return new_size
def _run_binsearch_scaling(
trainer: "pl.Trainer", model: "pl.LightningModule", new_size: int, batch_arg_name: str, max_trials: int
) -> int:
"""Batch scaling mode where the size is initially is doubled at each iteration until an OOM error is
encountered.
Hereafter, the batch size is further refined using a binary search
"""
low = 1
high = None
count = 0
while True:
garbage_collection_cuda()
trainer.fit_loop.global_step = 0 # reset after each try
try:
# Try fit
trainer.tuner._run(model)
count += 1
if count > max_trials:
break
# Double in size
low = new_size
if high:
if high - low <= 1:
break
midval = (high + low) // 2
new_size, changed = _adjust_batch_size(trainer, batch_arg_name, value=midval, desc="succeeded")
else:
new_size, changed = _adjust_batch_size(trainer, batch_arg_name, factor=2.0, desc="succeeded")
if changed:
# Force the train dataloader to reset as the batch size has changed
trainer.reset_train_dataloader(model)
trainer.reset_val_dataloader(model)
else:
break
except RuntimeError as exception:
# Only these errors should trigger an adjustment
if is_oom_error(exception):
# If we fail in power mode, half the size and return
garbage_collection_cuda()
high = new_size
midval = (high + low) // 2
new_size, _ = _adjust_batch_size(trainer, batch_arg_name, value=midval, desc="failed")
if high - low <= 1:
break
else:
raise # some other error not memory related
return new_size
def _adjust_batch_size(
trainer: "pl.Trainer",
batch_arg_name: str = "batch_size",
factor: float = 1.0,
value: Optional[int] = None,
desc: Optional[str] = None,
) -> Tuple[int, bool]:
"""Helper function for adjusting the batch size.
Args:
trainer: instance of pytorch_lightning.Trainer
batch_arg_name: name of the field where batch_size is stored.
factor: value which the old batch size is multiplied by to get the
new batch size
value: if a value is given, will override the batch size with this value.
Note that the value of `factor` will not have an effect in this case
desc: either `succeeded` or `failed`. Used purely for logging
Returns:
The new batch size for the next trial and a bool that signals whether the
new value is different than the previous batch size.
"""
model = trainer.lightning_module
batch_size = lightning_getattr(model, batch_arg_name)
new_size = value if value is not None else int(batch_size * factor)
if desc:
log.info(f"Batch size {batch_size} {desc}, trying batch size {new_size}")
if not _is_valid_batch_size(new_size, trainer.train_dataloader, trainer):
new_size = min(new_size, len(trainer.train_dataloader.dataset))
changed = new_size != batch_size
lightning_setattr(model, batch_arg_name, new_size)
return new_size, changed
def _is_valid_batch_size(batch_size: int, dataloader: DataLoader, trainer: "pl.Trainer"):
module = trainer.lightning_module or trainer.datamodule
return not has_len_all_ranks(dataloader, trainer.training_type_plugin, module) or batch_size <= len(dataloader)