lightning/pytorch_lightning/trainer/configuration_validator.py

291 lines
13 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytorch_lightning as pl
from pytorch_lightning.trainer.states import TrainerFn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.signature_utils import is_param_in_hook_signature
from pytorch_lightning.utilities.warnings import rank_zero_deprecation, rank_zero_warn
def verify_loop_configurations(trainer: "pl.Trainer", model: "pl.LightningModule") -> None:
r"""
Checks that the model is configured correctly before the run is started.
Args:
trainer: Lightning Trainer
model: The model to check the configuration.
"""
if trainer.state.fn in (TrainerFn.FITTING, TrainerFn.TUNING):
__verify_train_val_loop_configuration(trainer, model)
__verify_manual_optimization_support(trainer, model)
__check_training_step_requires_dataloader_iter(model)
elif trainer.state.fn == TrainerFn.VALIDATING:
__verify_eval_loop_configuration(trainer, model, "val")
elif trainer.state.fn == TrainerFn.TESTING:
__verify_eval_loop_configuration(trainer, model, "test")
elif trainer.state.fn == TrainerFn.PREDICTING:
__verify_eval_loop_configuration(trainer, model, "predict")
__verify_dp_batch_transfer_support(trainer, model)
_check_add_get_queue(model)
# TODO(@daniellepintz): Delete _check_progress_bar in v1.7
_check_progress_bar(model)
# TODO: Delete _check_on_post_move_to_device in v1.7
_check_on_post_move_to_device(model)
# TODO: Delete _check_on_keyboard_interrupt in v1.7
_check_on_keyboard_interrupt(trainer)
# TODO: Remove this in v1.7 (deprecation: #9816)
_check_dl_idx_in_on_train_batch_hooks(trainer, model)
def __verify_train_val_loop_configuration(trainer: "pl.Trainer", model: "pl.LightningModule") -> None:
# -----------------------------------
# verify model has a training step
# -----------------------------------
has_training_step = is_overridden("training_step", model)
if not has_training_step:
raise MisconfigurationException(
"No `training_step()` method defined. Lightning `Trainer` expects as minimum a"
" `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined."
)
# -----------------------------------
# verify model has a train dataloader
# -----------------------------------
has_train_dataloader = trainer._data_connector._train_dataloader_source.is_defined()
if not has_train_dataloader:
raise MisconfigurationException(
"No `train_dataloader()` method defined. Lightning `Trainer` expects as minimum a"
" `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined."
)
# -----------------------------------
# verify model has optimizer
# -----------------------------------
has_optimizers = is_overridden("configure_optimizers", model)
if not has_optimizers:
raise MisconfigurationException(
"No `configure_optimizers()` method defined. Lightning `Trainer` expects as minimum a"
" `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined."
)
# ----------------------------------------------
# verify model does not have on_train_dataloader
# ----------------------------------------------
has_on_train_dataloader = is_overridden("on_train_dataloader", model)
if has_on_train_dataloader:
rank_zero_deprecation(
"Method `on_train_dataloader` is deprecated in v1.5.0 and will be removed in v1.7.0."
" Please use `train_dataloader()` directly."
)
trainer.overriden_optimizer_step = is_overridden("optimizer_step", model)
trainer.overriden_optimizer_zero_grad = is_overridden("optimizer_zero_grad", model)
automatic_optimization = model.automatic_optimization
going_to_accumulate_grad_batches = trainer.accumulation_scheduler.going_to_accumulate_grad_batches()
has_overriden_optimization_functions = trainer.overriden_optimizer_step or trainer.overriden_optimizer_zero_grad
if has_overriden_optimization_functions and going_to_accumulate_grad_batches and automatic_optimization:
rank_zero_warn(
"When using `Trainer(accumulate_grad_batches != 1)` and overriding"
" `LightningModule.optimizer_{step,zero_grad}`, the hooks will not be called on every batch"
" (rather, they are called on every optimization step)."
)
# -----------------------------------
# verify model for val loop
# -----------------------------------
has_val_loader = trainer._data_connector._val_dataloader_source.is_defined()
has_val_step = is_overridden("validation_step", model)
if has_val_loader and not has_val_step:
rank_zero_warn("You passed in a `val_dataloader` but have no `validation_step`. Skipping val loop.")
if has_val_step and not has_val_loader:
rank_zero_warn("You defined a `validation_step` but have no `val_dataloader`. Skipping val loop.")
# ----------------------------------------------
# verify model does not have on_val_dataloader
# ----------------------------------------------
has_on_val_dataloader = is_overridden("on_val_dataloader", model)
if has_on_val_dataloader:
rank_zero_deprecation(
"Method `on_val_dataloader` is deprecated in v1.5.0 and will be removed in v1.7.0."
" Please use `val_dataloader()` directly."
)
def _check_progress_bar(model: "pl.LightningModule") -> None:
r"""
Checks if get_progress_bar_dict is overriden and sends a deprecation warning.
Args:
model: The model to check the get_progress_bar_dict method.
"""
if is_overridden("get_progress_bar_dict", model):
rank_zero_deprecation(
"The `LightningModule.get_progress_bar_dict` method was deprecated in v1.5 and will be removed in v1.7."
" Please use the `ProgressBarBase.get_metrics` instead."
)
def _check_on_post_move_to_device(model: "pl.LightningModule") -> None:
r"""
Checks if `on_post_move_to_device` method is overriden and sends a deprecation warning.
Args:
model: The model to check the `on_post_move_to_device` method.
"""
if is_overridden("on_post_move_to_device", model):
rank_zero_deprecation(
"Method `on_post_move_to_device` has been deprecated in v1.5 and will be removed in v1.7. "
"We perform automatic parameters tying without the need of implementing `on_post_move_to_device`."
)
def __verify_eval_loop_configuration(trainer: "pl.Trainer", model: "pl.LightningModule", stage: str) -> None:
loader_name = f"{stage}_dataloader"
step_name = "validation_step" if stage == "val" else f"{stage}_step"
trainer_method = "validate" if stage == "val" else stage
on_eval_hook = f"on_{loader_name}"
has_loader = getattr(trainer._data_connector, f"_{stage}_dataloader_source").is_defined()
has_step = is_overridden(step_name, model)
has_on_eval_dataloader = is_overridden(on_eval_hook, model)
# ----------------------------------------------
# verify model does not have on_eval_dataloader
# ----------------------------------------------
if has_on_eval_dataloader:
rank_zero_deprecation(
f"Method `{on_eval_hook}` is deprecated in v1.5.0 and will"
f" be removed in v1.7.0. Please use `{loader_name}()` directly."
)
# -----------------------------------
# verify model has an eval_dataloader
# -----------------------------------
if not has_loader:
raise MisconfigurationException(f"No `{loader_name}()` method defined to run `Trainer.{trainer_method}`.")
# predict_step is not required to be overridden
if stage == "predict":
if model.predict_step is None:
raise MisconfigurationException("`predict_step` cannot be None to run `Trainer.predict`")
elif not has_step and not is_overridden("forward", model):
raise MisconfigurationException("`Trainer.predict` requires `forward` method to run.")
else:
# -----------------------------------
# verify model has an eval_step
# -----------------------------------
if not has_step:
raise MisconfigurationException(f"No `{step_name}()` method defined to run `Trainer.{trainer_method}`.")
def __verify_dp_batch_transfer_support(trainer: "pl.Trainer", model: "pl.LightningModule") -> None:
"""Raise Misconfiguration exception since these hooks are not supported in DP mode."""
# TODO: Remove this blocker once batch transfer to device is integrated in Lightning for DP mode.
batch_transfer_hooks = ("on_before_batch_transfer", "transfer_batch_to_device", "on_after_batch_transfer")
for hook in batch_transfer_hooks:
if trainer._accelerator_connector.use_dp and is_overridden(hook, model):
raise MisconfigurationException(f"Overriding `{hook}` is not supported in DP mode.")
def __verify_manual_optimization_support(trainer: "pl.Trainer", model: "pl.LightningModule") -> None:
if model.automatic_optimization:
return
if trainer.gradient_clip_val is not None and trainer.gradient_clip_val > 0:
raise MisconfigurationException(
"Automatic gradient clipping is not supported for manual optimization."
f" Remove `Trainer(gradient_clip_val={trainer.gradient_clip_val})`"
" or switch to automatic optimization."
)
if trainer.accumulate_grad_batches != 1:
raise MisconfigurationException(
"Automatic gradient accumulation is not supported for manual optimization."
f" Remove `Trainer(accumulate_grad_batches={trainer.accumulate_grad_batches})`"
" or switch to automatic optimization."
)
def __check_training_step_requires_dataloader_iter(model: "pl.LightningModule"):
"""Check if the current `training_step` is requesting `dataloader_iter`."""
training_step_fx = model.training_step
if is_param_in_hook_signature(training_step_fx, "dataloader_iter", explicit=True):
if is_overridden("on_train_batch_start", model):
raise MisconfigurationException(
"The model hook `on_train_batch_start` is not compatible with "
"taking a `dataloader_iter` argument in your `training_step`."
)
if is_overridden("on_train_batch_end", model):
raise MisconfigurationException(
"The model hook `on_train_batch_end` is not compatible with "
"taking a `dataloader_iter` argument in your `training_step`."
)
if model.truncated_bptt_steps > 0:
raise MisconfigurationException(
"The model taking a `dataloader_iter` argument in your `training_step` "
"is incompatible with `truncated_bptt_steps > 0`."
)
def _check_add_get_queue(model: "pl.LightningModule") -> None:
r"""
Checks if add_to_queue or get_from_queue is overriden and sends a deprecation warning.
Args:
model: The lightning module
"""
if is_overridden("add_to_queue", model):
rank_zero_deprecation(
"The `LightningModule.add_to_queue` method was deprecated in v1.5 and will be removed in v1.7 in "
"favor of `DDPSpawnPlugin.add_to_queue`"
)
if is_overridden("get_from_queue", model):
rank_zero_deprecation(
"The `LightningModule.get_from_queue` method was deprecated in v1.5 and will be removed in v1.7 in "
"favor of `DDPSpawnPlugin.get_from_queue`"
)
def _check_on_keyboard_interrupt(trainer: "pl.Trainer") -> None:
"""Checks if on_keyboard_interrupt is overriden and sends a deprecation warning."""
for callback in trainer.callbacks:
if is_overridden(method_name="on_keyboard_interrupt", instance=callback):
rank_zero_deprecation(
"The `on_keyboard_interrupt` callback hook was deprecated in v1.5 and will be removed in v1.7."
" Please use the `on_exception` callback hook instead."
)
def _check_dl_idx_in_on_train_batch_hooks(trainer: "pl.Trainer", model: "pl.LightningModule") -> None:
for hook in ("on_train_batch_start", "on_train_batch_end"):
if is_param_in_hook_signature(getattr(model, hook), "dataloader_idx", explicit=True):
rank_zero_deprecation(
f"Base `LightningModule.{hook}` hook signature has changed in v1.5."
" The `dataloader_idx` argument will be removed in v1.7."
)
for cb in trainer.callbacks:
if is_param_in_hook_signature(getattr(cb, hook), "dataloader_idx", explicit=True):
rank_zero_deprecation(
f"Base `Callback.{hook}` hook signature has changed in v1.5."
" The `dataloader_idx` argument will be removed in v1.7."
)