367 lines
11 KiB
ReStructuredText
367 lines
11 KiB
ReStructuredText
.. _data-modules:
|
|
|
|
LightningDataModule
|
|
===================
|
|
A datamodule is a shareable, reusable class that encapsulates all the steps needed to process data:
|
|
|
|
.. raw:: html
|
|
|
|
<video width="100%" controls autoplay muted playsinline src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/pt_dm_vid.m4v"></video>
|
|
|
|
|
|
|
|
|
A datamodule encapsulates the five steps involved in data processing in PyTorch:
|
|
|
|
1. Download / tokenize / process.
|
|
2. Clean and (maybe) save to disk.
|
|
3. Load inside :class:`~torch.utils.data.Dataset`.
|
|
4. Apply transforms (rotate, tokenize, etc...).
|
|
5. Wrap inside a :class:`~torch.utils.data.DataLoader`.
|
|
|
|
|
|
|
|
|
This class can then be shared and used anywhere:
|
|
|
|
.. code-block:: python
|
|
|
|
from pl_bolts.datamodules import CIFAR10DataModule, ImagenetDataModule
|
|
|
|
model = LitClassifier()
|
|
trainer = Trainer()
|
|
|
|
imagenet = ImagenetDataModule()
|
|
trainer.fit(model, imagenet)
|
|
|
|
cifar10 = CIFAR10DataModule()
|
|
trainer.fit(model, cifar10)
|
|
|
|
---------------
|
|
|
|
Why do I need a DataModule?
|
|
---------------------------
|
|
In normal PyTorch code, the data cleaning/preparation is usually scattered across many files. This makes
|
|
sharing and reusing the exact splits, and transforms across projects.
|
|
|
|
Datamodules are for you if you ever asked the questions:
|
|
|
|
- what splits did you use?
|
|
- what transforms did you use?
|
|
- what normalization did you use?
|
|
- how did you prepare/tokenize the data?
|
|
|
|
--------------
|
|
|
|
What is a DataModule
|
|
--------------------
|
|
A DataModule is simply a collection of a train_dataloader, val_dataloader(s), test_dataloader(s) along with the
|
|
matching transforms and data processing/downloads steps required.
|
|
|
|
Here's a simple PyTorch example:
|
|
|
|
.. code-block:: python
|
|
|
|
# regular PyTorch
|
|
test_data = MNIST(PATH, train=False, download=True)
|
|
train_data = MNIST(PATH, train=True, download=True)
|
|
train_data, val_data = random_split(train_data, [55000, 5000])
|
|
|
|
train_loader = DataLoader(train_data, batch_size=32)
|
|
val_loader = DataLoader(val_data, batch_size=32)
|
|
test_loader = DataLoader(test_data, batch_size=32)
|
|
|
|
The equivalent DataModule just organizes the same exact code, but makes it reusable across projects.
|
|
|
|
.. code-block:: python
|
|
|
|
class MNISTDataModule(pl.LightningDataModule):
|
|
|
|
def __init__(self, data_dir: str = PATH, batch_size):
|
|
super().__init__()
|
|
self.batch_size = batch_size
|
|
|
|
def setup(self, stage=None):
|
|
self.mnist_test = MNIST(self.data_dir, train=False)
|
|
mnist_full = MNIST(self.data_dir, train=True)
|
|
self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(self.mnist_train, batch_size=self.batch_size)
|
|
|
|
def val_dataloader(self):
|
|
return DataLoader(self.mnist_val, batch_size=self.batch_size)
|
|
|
|
def test_dataloader(self):
|
|
return DataLoader(self.mnist_test, batch_size=self.batch_size)
|
|
|
|
But now, as the complexity of your processing grows (transforms, multiple-GPU training), you can
|
|
let Lightning handle those details for you while making this dataset reusable so you can share with
|
|
colleagues or use in different projects.
|
|
|
|
.. code-block:: python
|
|
|
|
mnist = MNISTDataModule(PATH)
|
|
model = LitClassifier()
|
|
|
|
trainer = Trainer()
|
|
trainer.fit(model, mnist)
|
|
|
|
Here's a more realistic, complex DataModule that shows how much more reusable the datamodule is.
|
|
|
|
.. code-block:: python
|
|
|
|
import pytorch_lightning as pl
|
|
from torch.utils.data import random_split, DataLoader
|
|
|
|
# Note - you must have torchvision installed for this example
|
|
from torchvision.datasets import MNIST
|
|
from torchvision import transforms
|
|
|
|
|
|
class MNISTDataModule(pl.LightningDataModule):
|
|
|
|
def __init__(self, data_dir: str = './'):
|
|
super().__init__()
|
|
self.data_dir = data_dir
|
|
self.transform = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,))
|
|
])
|
|
|
|
# self.dims is returned when you call dm.size()
|
|
# Setting default dims here because we know them.
|
|
# Could optionally be assigned dynamically in dm.setup()
|
|
self.dims = (1, 28, 28)
|
|
|
|
def prepare_data(self):
|
|
# download
|
|
MNIST(self.data_dir, train=True, download=True)
|
|
MNIST(self.data_dir, train=False, download=True)
|
|
|
|
def setup(self, stage=None):
|
|
|
|
# Assign train/val datasets for use in dataloaders
|
|
if stage == 'fit' or stage is None:
|
|
mnist_full = MNIST(self.data_dir, train=True, transform=self.transform)
|
|
self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])
|
|
|
|
# Optionally...
|
|
# self.dims = tuple(self.mnist_train[0][0].shape)
|
|
|
|
# Assign test dataset for use in dataloader(s)
|
|
if stage == 'test' or stage is None:
|
|
self.mnist_test = MNIST(self.data_dir, train=False, transform=self.transform)
|
|
|
|
# Optionally...
|
|
# self.dims = tuple(self.mnist_test[0][0].shape)
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(self.mnist_train, batch_size=32)
|
|
|
|
def val_dataloader(self):
|
|
return DataLoader(self.mnist_val, batch_size=32)
|
|
|
|
def test_dataloader(self):
|
|
return DataLoader(self.mnist_test, batch_size=32)
|
|
|
|
.. note:: ``setup`` expects a string arg ``stage``. It is used to separate setup logic for ``trainer.fit`` and ``trainer.test``.
|
|
|
|
---------------
|
|
|
|
LightningDataModule API
|
|
-----------------------
|
|
To define a DataModule define 5 methods:
|
|
|
|
- prepare_data (how to download(), tokenize, etc...)
|
|
- setup (how to split, etc...)
|
|
- train_dataloader
|
|
- val_dataloader(s)
|
|
- test_dataloader(s)
|
|
|
|
prepare_data
|
|
^^^^^^^^^^^^
|
|
Use this method to do things that might write to disk or that need to be done only from a single GPU in distributed
|
|
settings.
|
|
|
|
- download
|
|
- tokenize
|
|
- etc...
|
|
|
|
.. code-block:: python
|
|
|
|
class MNISTDataModule(pl.LightningDataModule):
|
|
def prepare_data(self):
|
|
# download
|
|
MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor())
|
|
MNIST(os.getcwd(), train=False, download=True, transform=transforms.ToTensor())
|
|
|
|
.. warning:: `prepare_data` is called from a single GPU. Do not use it to assign state (`self.x = y`).
|
|
|
|
setup
|
|
^^^^^
|
|
There are also data operations you might want to perform on every GPU. Use setup to do things like:
|
|
|
|
- count number of classes
|
|
- build vocabulary
|
|
- perform train/val/test splits
|
|
- etc...
|
|
|
|
.. code-block:: python
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
|
|
class MNISTDataModule(pl.LightningDataModule):
|
|
|
|
def setup(self, stage: Optional[str] = None):
|
|
|
|
# Assign Train/val split(s) for use in Dataloaders
|
|
if stage == 'fit' or stage is None:
|
|
mnist_full = MNIST(self.data_dir, train=True, download=True)
|
|
self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])
|
|
self.dims = self.mnist_train[0][0].shape
|
|
|
|
# Assign Test split(s) for use in Dataloaders
|
|
if stage == 'test' or stage is None:
|
|
self.mnist_test = MNIST(self.data_dir, train=False, download=True)
|
|
self.dims = getattr(self, 'dims', self.mnist_test[0][0].shape)
|
|
|
|
|
|
.. warning:: `setup` is called from every GPU. Setting state here is okay.
|
|
|
|
|
|
train_dataloader
|
|
^^^^^^^^^^^^^^^^
|
|
Use this method to generate the train dataloader. This is also a good place to place default transformations.
|
|
|
|
.. code-block:: python
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
|
|
class MNISTDataModule(pl.LightningDataModule):
|
|
def train_dataloader(self):
|
|
transforms = transform_lib.Compose([
|
|
transform_lib.ToTensor(),
|
|
transform_lib.Normalize(mean=(0.5,), std=(0.5,)),
|
|
])
|
|
return DataLoader(self.train_dataset, transform=transforms, batch_size=64)
|
|
|
|
However, to decouple your data from transforms you can parametrize them via `__init__`.
|
|
|
|
.. code-block:: python
|
|
|
|
class MNISTDataModule(pl.LightningDataModule):
|
|
def __init__(self, train_transforms, val_transforms, test_transforms):
|
|
self.train_transforms = train_transforms
|
|
self.val_transforms = val_transforms
|
|
self.test_transforms = test_transforms
|
|
|
|
val_dataloader
|
|
^^^^^^^^^^^^^^
|
|
Use this method to generate the val dataloader. This is also a good place to place default transformations.
|
|
|
|
.. code-block:: python
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
|
|
class MNISTDataModule(pl.LightningDataModule):
|
|
def val_dataloader(self):
|
|
transforms = transform_lib.Compose([
|
|
transform_lib.ToTensor(),
|
|
transform_lib.Normalize(mean=(0.5,), std=(0.5,)),
|
|
])
|
|
return DataLoader(self.val_dataset, transform=transforms, batch_size=64)
|
|
|
|
test_dataloader
|
|
^^^^^^^^^^^^^^^
|
|
Use this method to generate the test dataloader. This is also a good place to place default transformations.
|
|
|
|
.. code-block:: python
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
|
|
class MNISTDataModule(pl.LightningDataModule):
|
|
def test_dataloader(self):
|
|
transforms = transform_lib.Compose([
|
|
transform_lib.ToTensor(),
|
|
transform_lib.Normalize(mean=(0.5,), std=(0.5,)),
|
|
])
|
|
return DataLoader(self.test_dataset, transform=transforms, batch_size=64)
|
|
|
|
transfer_batch_to_device
|
|
^^^^^^^^^^^^^^^^^^^^^^^^
|
|
Override to define how you want to move an arbitrary batch to a device
|
|
|
|
.. code-block:: python
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
|
|
class MNISTDataModule(pl.LightningDataModule):
|
|
def transfer_batch_to_device(self, batch, device):
|
|
x = batch['x']
|
|
x = CustomDataWrapper(x)
|
|
batch['x'].to(device)
|
|
return batch
|
|
|
|
------------------
|
|
|
|
Using a DataModule
|
|
------------------
|
|
|
|
The recommended way to use a DataModule is simply:
|
|
|
|
.. code-block:: python
|
|
|
|
dm = MNISTDataModule()
|
|
model = Model()
|
|
trainer.fit(model, dm)
|
|
|
|
trainer.test(datamodule=dm)
|
|
|
|
If you need information from the dataset to build your model, then run `prepare_data` and `setup` manually (Lightning
|
|
still ensures the method runs on the correct devices)
|
|
|
|
.. code-block:: python
|
|
|
|
dm = MNISTDataModule()
|
|
dm.prepare_data()
|
|
dm.setup('fit')
|
|
|
|
model = Model(num_classes=dm.num_classes, width=dm.width, vocab=dm.vocab)
|
|
trainer.fit(model, dm)
|
|
|
|
dm.setup('test')
|
|
trainer.test(datamodule=dm)
|
|
|
|
----------------
|
|
|
|
Datamodules without Lightning
|
|
-----------------------------
|
|
You can of course use DataModules in plain PyTorch code as well.
|
|
|
|
.. code-block:: python
|
|
|
|
# download, etc...
|
|
dm = MNISTDataModule()
|
|
dm.prepare_data()
|
|
|
|
# splits/transforms
|
|
dm.setup('fit')
|
|
|
|
# use data
|
|
for batch in dm.train_dataloader():
|
|
...
|
|
for batch in dm.val_dataloader():
|
|
...
|
|
|
|
# lazy load test data
|
|
dm.setup('test')
|
|
for batch in dm.test_dataloader():
|
|
...
|
|
|
|
But overall, DataModules encourage reproducibility by allowing all details of a dataset to be specified in a unified
|
|
structure.
|