95ae393ca8
* placeholder * mirror + prune * makedir * setup * ci * ci * name * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * ci clean * empty * py * parallel * doctest * flake8 * ci * typo * replace * clean * Apply suggestions from code review * re.sub * fix UI path * full replace * ui path? * replace * updates * regex * ci * fix * ci * path * ci * replace * Update .actions/setup_tools.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * also convert lightning_lite tests for PL tests to adapt mocking paths * fix app example test * update logger propagation for PL tests * update logger propagation for PL tests * Apply suggestions from code review * Revert "update logger propagation for PL tests" This reverts commit |
||
---|---|---|
.. | ||
base-cuda | ||
base-ipu | ||
base-xla | ||
ci-runner-hpu | ||
ci-runner-ipu | ||
nvidia | ||
release | ||
tpu-tests | ||
README.md |
README.md
Docker images
Build images from Dockerfiles
You can build it on your own, note it takes lots of time, be prepared.
git clone https://github.com/Lightning-AI/lightning.git
# build with the default arguments
docker image build -t pytorch-lightning:latest -f dockers/base-cuda/Dockerfile .
# build with specific arguments
docker image build -t pytorch-lightning:base-cuda-py3.9-torch1.12-cuda11.6.1 -f dockers/base-cuda/Dockerfile --build-arg PYTHON_VERSION=3.9 --build-arg PYTORCH_VERSION=1.12 --build-arg CUDA_VERSION=11.6.1 .
To run your docker use
docker image list
docker run --rm -it pytorch-lightning:latest bash
and if you do not need it anymore, just clean it:
docker image list
docker image rm pytorch-lightning:latest
Run docker image with GPUs
To run docker image with access to your GPUs, you need to install
# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
and later run the docker image with --gpus all
. For example,
docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.12-cuda11.6.1
Run Jupyter server
Inspiration comes from https://u.group/thinking/how-to-put-jupyter-notebooks-in-a-dockerfile
- Build the docker image:
docker image build -t pytorch-lightning:v1.6.5 -f dockers/nvidia/Dockerfile --build-arg LIGHTNING_VERSION=1.6.5 .
- start the server and map ports:
docker run --rm -it --gpus=all -p 8888:8888 pytorch-lightning:v1.6.5
- Connect in local browser:
- copy the generated path e.g.
http://hostname:8888/?token=0719fa7e1729778b0cec363541a608d5003e26d4910983c6
- replace the
hostname
bylocalhost
- copy the generated path e.g.