lightning/tests
Jeremy Jordan 4c2026bf9a
increase profiler test coverage (#1208)
* increase profiler test coverage

* fix line length

* tests for valueerror assertions
2020-03-24 09:15:16 -04:00
..
loggers test deprecated - model (#1074) 2020-03-20 20:51:14 +01:00
models test deprecated - model (#1074) 2020-03-20 20:51:14 +01:00
trainer ReduceLROnPlateau bug fix (#1126) 2020-03-16 14:35:10 -04:00
README.md Update tests README to point to tests/requirements.txt (#935) 2020-02-25 09:45:34 -05:00
__init__.py added init to test folder 2019-07-24 21:32:31 -04:00
conftest.py Fix amp tests (#661) 2020-01-05 14:34:25 -05:00
requirements.txt separate requirements for logger dependencies (#792) 2020-02-21 13:30:27 -05:00
test_amp.py cleaning imports (#1032) 2020-03-12 12:41:37 -04:00
test_cpu_models.py nan detection and intervention (#1097) 2020-03-19 09:24:45 -04:00
test_deprecated.py test deprecated - model (#1074) 2020-03-20 20:51:14 +01:00
test_gpu_models.py cleaning imports (#1032) 2020-03-12 12:41:37 -04:00
test_profiler.py increase profiler test coverage (#1208) 2020-03-24 09:15:16 -04:00
test_restore_models.py update checkpoint docs (#1016) 2020-03-03 15:16:57 -05:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install module locally
pip install -e .

# install dev deps
pip install -r tests/requirements.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under tests/requirements.txt)
pip install coverage
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v --doctest-modules

# print coverage stats
coverage report -m

# exporting resulys
coverage xml
codecov -t 17327163-8cca-4a5d-86c8-ca5f2ef700bc  -v