333 lines
12 KiB
Python
333 lines
12 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import io
|
|
import os
|
|
import re
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
|
|
from pytorch_lightning import _logger as log
|
|
from pytorch_lightning.accelerators.accelerator import Accelerator
|
|
from pytorch_lightning.core import LightningModule
|
|
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only, rank_zero_warn
|
|
from pytorch_lightning.utilities.cloud_io import atomic_save
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from pytorch_lightning.utilities.xla_device_utils import XLADeviceUtils
|
|
|
|
TPU_AVAILABLE = XLADeviceUtils.tpu_device_exists()
|
|
|
|
if TPU_AVAILABLE:
|
|
import torch_xla
|
|
import torch_xla.core.xla_model as xm
|
|
import torch_xla.distributed.parallel_loader as xla_pl
|
|
import torch_xla.distributed.xla_multiprocessing as xmp
|
|
|
|
|
|
class TPUAccelerator(Accelerator):
|
|
|
|
def __init__(self, trainer, cluster_environment=None):
|
|
super().__init__(trainer, cluster_environment)
|
|
self.start_method = None
|
|
self.mp_queue = None
|
|
self.nickname = None
|
|
|
|
def setup(self, model):
|
|
rank_zero_info(f'training on {self.trainer.tpu_cores} TPU cores')
|
|
|
|
# TODO: Move this check to Trainer __init__ or device parser
|
|
if not TPU_AVAILABLE:
|
|
raise MisconfigurationException('PyTorch XLA not installed.')
|
|
|
|
# see: https://discuss.pytorch.org/t/segfault-with-multiprocessing-queue/81292/2
|
|
self.start_method = 'fork'
|
|
|
|
# pass in a state q
|
|
smp = mp.get_context(self.start_method)
|
|
self.mp_queue = smp.SimpleQueue()
|
|
|
|
self.trainer.model = model
|
|
|
|
def teardown(self):
|
|
model = self.trainer.model
|
|
|
|
# restore main state with best weights
|
|
best_path = self.mp_queue.get()
|
|
results = self.mp_queue.get()
|
|
last_path = self.mp_queue.get()
|
|
|
|
# transfer back the best path to the trainer
|
|
if self.trainer.checkpoint_callback is not None:
|
|
self.trainer.checkpoint_callback.best_model_path = best_path
|
|
# todo, pass also bets score
|
|
|
|
# load last weights
|
|
if last_path and not self.trainer.testing:
|
|
ckpt = torch.load(last_path, map_location=lambda storage, loc: storage)
|
|
model.load_state_dict(ckpt)
|
|
|
|
self.trainer.model = model
|
|
|
|
# when training completes, load the weights back in main process
|
|
self.__load_weights_on_main_process()
|
|
return results
|
|
|
|
def train(self):
|
|
model = self.trainer.model
|
|
|
|
# train
|
|
if self.trainer.tpu_id is not None:
|
|
self.tpu_train_in_process(self.trainer.tpu_id, model, self.trainer, self.mp_queue)
|
|
else:
|
|
xmp.spawn(
|
|
self.tpu_train_in_process,
|
|
args=(model, self.trainer, self.mp_queue),
|
|
nprocs=self.trainer.tpu_cores,
|
|
start_method=self.start_method
|
|
)
|
|
|
|
def __load_weights_on_main_process(self):
|
|
model = self.trainer.model
|
|
|
|
# load weights if not interrupted
|
|
if self.trainer.on_colab_kaggle and not self.trainer.testing:
|
|
self.load_spawn_weights(model)
|
|
|
|
self.trainer.model = model
|
|
|
|
def tpu_train_in_process(self, tpu_core_idx: int, model: LightningModule, trainer=None, mp_queue=None):
|
|
"""
|
|
Here we are inside each individual process
|
|
"""
|
|
if not trainer:
|
|
trainer = self.trainer
|
|
|
|
trainer.call_setup_hook(model)
|
|
|
|
# setup TPU training
|
|
self.__setup_tpu_training(model, trainer)
|
|
|
|
# set up training routine
|
|
self.trainer.train_loop.setup_training(model)
|
|
|
|
# train or test
|
|
results = self.train_or_test()
|
|
|
|
# save weights at the end of training
|
|
self.__save_end_of_training_weights(model, trainer)
|
|
|
|
# persist info in spawn
|
|
self.transfer_distrib_spawn_state_on_fit_end(model, mp_queue, results)
|
|
|
|
def training_step(self, args):
|
|
batch = args[0]
|
|
batch = self.to_device(batch)
|
|
args[0] = batch
|
|
output = self.trainer.model.training_step(*args)
|
|
return output
|
|
|
|
def validation_step(self, args):
|
|
batch = args[0]
|
|
batch = self.to_device(batch)
|
|
args[0] = batch
|
|
output = self.trainer.model.validation_step(*args)
|
|
return output
|
|
|
|
def test_step(self, args):
|
|
batch = args[0]
|
|
batch = self.to_device(batch)
|
|
args[0] = batch
|
|
output = self.trainer.model.test_step(*args)
|
|
return output
|
|
|
|
def process_dataloader(self, dataloader):
|
|
device = xm.xla_device(self.trainer.tpu_id)
|
|
dataloader = xla_pl.ParallelLoader(dataloader, [device])
|
|
dataloader = dataloader.per_device_loader(device)
|
|
return dataloader
|
|
|
|
def to_device(self, batch):
|
|
"""
|
|
Transfers the data to the TPU.
|
|
|
|
Args:
|
|
batch: A tensor or collection of tensors.
|
|
tpu_id: The id of the TPU core. If omitted, the first available core is chosen.
|
|
|
|
Return:
|
|
the tensor on the TPU device.
|
|
|
|
See Also:
|
|
- :func:`~pytorch_lightning.utilities.apply_func.move_data_to_device`
|
|
"""
|
|
if not TPU_AVAILABLE:
|
|
raise MisconfigurationException(
|
|
'Requested to transfer batch to TPU but XLA is not available.'
|
|
' Are you sure this machine has TPUs?'
|
|
)
|
|
device = xm.xla_device(self.trainer.tpu_id)
|
|
|
|
return self.batch_to_device(batch, device)
|
|
|
|
def __save_end_of_training_weights(self, model: LightningModule, trainer):
|
|
# when training ends on these platforms dump weights to get out of the main process
|
|
if trainer.on_colab_kaggle:
|
|
rank_zero_warn('cleaning up... please do not interrupt')
|
|
self.save_spawn_weights(model)
|
|
|
|
def __setup_tpu_training(self, model: LightningModule, trainer):
|
|
# use the default device from the process
|
|
# tpu_device = xm.xla_device()
|
|
|
|
# if given an ordinal device, use this as the device
|
|
if trainer.tpu_id is not None:
|
|
tpu_device = xm.xla_device(trainer.tpu_id)
|
|
else:
|
|
tpu_device = xm.xla_device()
|
|
# track the device and move model to it
|
|
trainer._device = tpu_device
|
|
model.to(trainer._device)
|
|
|
|
# get the appropriate tpu ranks
|
|
trainer.tpu_local_core_rank = xm.get_local_ordinal()
|
|
trainer.tpu_global_core_rank = xm.get_ordinal()
|
|
|
|
# avoid duplicating progress bar
|
|
if trainer.tpu_global_core_rank != 0 and trainer.progress_bar_callback is not None:
|
|
trainer.progress_bar_callback.disable()
|
|
|
|
trainer.global_rank = trainer.tpu_local_core_rank
|
|
rank_zero_only.rank = trainer.global_rank
|
|
|
|
# CHOOSE OPTIMIZER
|
|
# allow for lr schedulers as well
|
|
self.setup_optimizers(model)
|
|
|
|
# init 16 bit for TPU
|
|
if trainer.precision == 16:
|
|
os.environ['XLA_USE_BF16'] = str(1)
|
|
|
|
log.info(f'INIT TPU local core: {trainer.tpu_local_core_rank},'
|
|
f' global rank: {trainer.tpu_global_core_rank}'
|
|
f' with XLA_USE_BF16={os.environ.get("XLA_USE_BF16")}')
|
|
|
|
def backward(self, closure_loss, optimizer, opt_idx, *args, **kwargs):
|
|
# do backward pass
|
|
if self.trainer.train_loop.automatic_optimization:
|
|
model = self.trainer.get_model()
|
|
model.backward(closure_loss, optimizer, opt_idx)
|
|
else:
|
|
closure_loss.backward(*args, **kwargs)
|
|
|
|
# detach after backward
|
|
closure_loss = closure_loss.detach()
|
|
|
|
return closure_loss
|
|
|
|
def optimizer_step(self, optimizer, batch_idx, opt_idx, lambda_closure):
|
|
model_ref = self.trainer.get_model()
|
|
is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
|
|
|
|
# model hook
|
|
model_ref.optimizer_step(
|
|
self.trainer.current_epoch,
|
|
batch_idx, optimizer,
|
|
opt_idx,
|
|
lambda_closure,
|
|
on_tpu=True,
|
|
using_lbfgs=is_lbfgs
|
|
)
|
|
|
|
def clip_gradients(self, optimizer, clip_val=None):
|
|
# apply clip gradients
|
|
# TODO: separate TPU case from here
|
|
self._clip_gradients(optimizer, clip_val)
|
|
|
|
def barrier(self, name: Optional[str] = None):
|
|
torch_xla.core.xla_model.rendezvous(f"pl.Trainer.{name}")
|
|
|
|
def early_stopping_should_stop(self, pl_module):
|
|
stop = torch.tensor(int(self.trainer.should_stop), device=pl_module.device, dtype=torch.int32)
|
|
stop = xm.mesh_reduce("stop_signal", stop, sum)
|
|
torch_xla.core.xla_model.rendezvous("pl.EarlyStoppingCallback.stop_distributed_training_check")
|
|
should_stop = int(stop.item()) == self.trainer.world_size
|
|
return should_stop
|
|
|
|
def save_spawn_weights(self, model):
|
|
"""
|
|
Dump a temporary checkpoint after ddp ends to get weights out of the process
|
|
:param model:
|
|
:return:
|
|
"""
|
|
if self.trainer.is_global_zero:
|
|
path = os.path.join(self.trainer.default_root_dir, '__temp_weight_distributed_end.ckpt')
|
|
self.trainer.save_checkpoint(path)
|
|
return path
|
|
|
|
def load_spawn_weights(self, original_model):
|
|
"""
|
|
Load the temp weights saved in the process
|
|
To recover the trained model from the ddp process we load the saved weights
|
|
:param model:
|
|
:return:
|
|
"""
|
|
|
|
loaded_model = original_model
|
|
|
|
if self.trainer.is_global_zero:
|
|
# load weights saved in ddp
|
|
path = os.path.join(self.trainer.default_root_dir, '__temp_weight_distributed_end.ckpt')
|
|
loaded_model = original_model.__class__.load_from_checkpoint(path)
|
|
|
|
# copy loaded weights to old model
|
|
original_model.load_state_dict(loaded_model.state_dict())
|
|
|
|
# remove ddp weights
|
|
os.remove(path)
|
|
|
|
return loaded_model
|
|
|
|
def transfer_distrib_spawn_state_on_fit_end(self, model, mp_queue, results):
|
|
if self.trainer.distributed_backend not in ("ddp_spawn", "ddp_cpu", "tpu"):
|
|
return
|
|
|
|
# track the best model path
|
|
best_model_path = None
|
|
if self.trainer.checkpoint_callback is not None:
|
|
best_model_path = self.trainer.checkpoint_callback.best_model_path
|
|
|
|
if self.trainer.global_rank == 0 and mp_queue is not None:
|
|
rank_zero_warn('cleaning up ddp environment...')
|
|
# todo, pass complete checkpoint as state dictionary
|
|
mp_queue.put(best_model_path)
|
|
mp_queue.put(results)
|
|
|
|
# save the last weights
|
|
last_path = None
|
|
if not self.trainer.testing and best_model_path is not None and len(best_model_path) > 0:
|
|
last_path = re.sub('.ckpt', '.tmp_end.ckpt', best_model_path)
|
|
atomic_save(model.state_dict(), last_path)
|
|
mp_queue.put(last_path)
|
|
|
|
def broadcast(self, obj, src=0):
|
|
buffer = io.BytesIO()
|
|
torch.save(obj, buffer)
|
|
data = bytearray(buffer.getbuffer())
|
|
data_tensor = torch.tensor(data).to(xm.xla_device(), dtype=torch.float)
|
|
data = xm.all_gather(data_tensor)
|
|
buffer = io.BytesIO(data.cpu().byte().numpy())
|
|
obj = torch.load(buffer)
|
|
return obj
|