257 lines
9.2 KiB
Python
257 lines
9.2 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License
|
|
import os
|
|
import re
|
|
from typing import List, Optional
|
|
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
import torch.distributed as torch_distrib
|
|
import torch.distributed as dist
|
|
from torch.nn.parallel import DistributedDataParallel
|
|
|
|
from pytorch_lightning import _logger as log
|
|
from pytorch_lightning.accelerators.accelerator import Accelerator
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from pytorch_lightning.utilities import AMPType
|
|
from pytorch_lightning.utilities.cloud_io import atomic_save, load as pl_load
|
|
from pytorch_lightning.utilities.distributed import rank_zero_only, rank_zero_warn, find_free_network_port
|
|
from pytorch_lightning.utilities.seed import seed_everything
|
|
from pytorch_lightning.distributed.dist import LightningDistributed
|
|
|
|
try:
|
|
from hydra.core.hydra_config import HydraConfig
|
|
from hydra.utils import get_original_cwd, to_absolute_path
|
|
except ImportError:
|
|
HYDRA_AVAILABLE = False
|
|
else:
|
|
HYDRA_AVAILABLE = True
|
|
|
|
|
|
class DDPSpawnAccelerator(Accelerator):
|
|
|
|
def __init__(self, trainer, nprocs, cluster_environment=None, ddp_plugin=None):
|
|
super().__init__(trainer, cluster_environment, ddp_plugin)
|
|
self.mp_queue = None
|
|
self.nprocs = nprocs
|
|
self.dist = LightningDistributed()
|
|
self.nickname = 'ddp'
|
|
|
|
def setup(self, model):
|
|
os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', str(find_free_network_port()))
|
|
|
|
# pass in a state q
|
|
smp = mp.get_context('spawn')
|
|
self.mp_queue = smp.SimpleQueue()
|
|
|
|
self.trainer.model = model
|
|
|
|
def train(self):
|
|
model = self.trainer.model
|
|
|
|
# train in children process
|
|
mp.spawn(self.ddp_train, nprocs=self.nprocs, args=(self.mp_queue, model,))
|
|
|
|
# restore main state with best weights
|
|
best_path = self.mp_queue.get()
|
|
results = self.mp_queue.get()
|
|
last_path = self.mp_queue.get()
|
|
|
|
# recover the weights of the processes trained in the children
|
|
self.__recover_child_process_weights(model, best_path, last_path)
|
|
return results
|
|
|
|
def ddp_train(self, process_idx, mp_queue, model, is_master=False, proc_offset=0):
|
|
"""
|
|
Entry point for ddp
|
|
|
|
Args:
|
|
process_idx:
|
|
mp_queue: multiprocessing queue
|
|
model:
|
|
"""
|
|
seed = os.environ.get("PL_GLOBAL_SEED")
|
|
if seed is not None:
|
|
seed_everything(int(seed))
|
|
|
|
# offset the process id if requested
|
|
process_idx = process_idx + proc_offset
|
|
|
|
# show progressbar only on progress_rank 0
|
|
if (self.trainer.node_rank != 0 or process_idx != 0) and self.trainer.progress_bar_callback is not None:
|
|
self.trainer.progress_bar_callback.disable()
|
|
|
|
# determine which process we are and world size
|
|
self.set_world_ranks(process_idx)
|
|
|
|
# set warning rank
|
|
rank_zero_only.rank = self.trainer.global_rank
|
|
|
|
# set up server using proc 0's ip address
|
|
# try to init for 20 times at max in case ports are taken
|
|
# where to store ip_table
|
|
model.trainer = self.trainer
|
|
self.init_ddp_connection(
|
|
self.trainer.global_rank,
|
|
self.trainer.world_size,
|
|
self.trainer.is_slurm_managing_tasks
|
|
)
|
|
|
|
# call setup after the ddp process has connected
|
|
self.trainer.call_setup_hook(model)
|
|
|
|
# on world_size=0 let everyone know training is starting
|
|
if self.trainer.is_global_zero and not torch.distributed.is_initialized():
|
|
log.info('-' * 100)
|
|
log.info(f'distributed_backend={self.trainer.distributed_backend}')
|
|
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
|
|
log.info('-' * 100)
|
|
|
|
# call sync_bn before .cuda(), configure_apex and configure_ddp
|
|
if self.trainer.sync_batchnorm:
|
|
model = self.configure_sync_batchnorm(model)
|
|
|
|
# move the model to the correct device
|
|
self.model_to_device(model, process_idx, is_master)
|
|
|
|
# CHOOSE OPTIMIZER
|
|
# allow for lr schedulers as well
|
|
self.setup_optimizers(model)
|
|
|
|
# set model properties before going into wrapper
|
|
self.trainer.model_connector.copy_trainer_model_properties(model)
|
|
|
|
# 16-bit
|
|
model = self.trainer.precision_connector.connect(model)
|
|
|
|
# device ids change depending on the DDP setup
|
|
device_ids = self.get_device_ids()
|
|
|
|
# allow user to configure ddp
|
|
model = self.configure_ddp(model, device_ids)
|
|
|
|
# set up training routine
|
|
self.trainer.train_loop.setup_training(model)
|
|
|
|
# train or test
|
|
results = self.train_or_test()
|
|
|
|
# get original model
|
|
model = self.trainer.get_model()
|
|
|
|
# persist info in ddp_spawn
|
|
self.transfer_distrib_spawn_state_on_fit_end(model, mp_queue, results)
|
|
|
|
# clean up memory
|
|
torch.cuda.empty_cache()
|
|
|
|
def set_world_ranks(self, process_idx):
|
|
self.trainer.local_rank = process_idx
|
|
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
|
|
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes
|
|
|
|
def model_to_device(self, model, process_idx, is_master):
|
|
gpu_idx = self.trainer.data_parallel_device_ids[self.trainer.local_rank]
|
|
self.trainer.root_gpu = gpu_idx
|
|
torch.cuda.set_device(self.trainer.root_gpu)
|
|
model.cuda(self.trainer.root_gpu)
|
|
|
|
def get_device_ids(self):
|
|
device_ids = [self.trainer.root_gpu]
|
|
return device_ids
|
|
|
|
def training_step(self, args):
|
|
if self.trainer.amp_backend == AMPType.NATIVE:
|
|
with torch.cuda.amp.autocast():
|
|
output = self.trainer.model(*args)
|
|
else:
|
|
output = self.trainer.model(*args)
|
|
return output
|
|
|
|
def validation_step(self, args):
|
|
output = self.training_step(args)
|
|
return output
|
|
|
|
def test_step(self, args):
|
|
output = self.training_step(args)
|
|
return output
|
|
|
|
def barrier(self, name: Optional[str] = None):
|
|
if torch_distrib.is_initialized():
|
|
torch_distrib.barrier()
|
|
|
|
def early_stopping_should_stop(self, pl_module):
|
|
stop = torch.tensor(int(self.trainer.should_stop), device=pl_module.device)
|
|
dist.all_reduce(stop, op=dist.reduce_op.SUM)
|
|
dist.barrier()
|
|
should_stop = stop == self.trainer.world_size
|
|
return should_stop
|
|
|
|
def broadcast(self, obj, src=0):
|
|
return self.dist.broadcast(obj)
|
|
|
|
def __recover_child_process_weights(self, model, best_path, last_path):
|
|
# transfer back the best path to the trainer
|
|
if self.trainer.checkpoint_callback:
|
|
self.trainer.checkpoint_callback.best_model_path = best_path
|
|
# todo, pass also best score
|
|
|
|
# load last weights
|
|
if last_path is not None and not self.trainer.testing:
|
|
ckpt = pl_load(last_path, map_location=lambda storage, loc: storage)
|
|
model.load_state_dict(ckpt)
|
|
|
|
self.trainer.model = model
|
|
|
|
def transfer_distrib_spawn_state_on_fit_end(self, model, mp_queue, results):
|
|
best_model_path = None
|
|
if self.trainer.checkpoint_callback is not None:
|
|
best_model_path = self.trainer.checkpoint_callback.best_model_path
|
|
|
|
if self.trainer.global_rank == 0 and mp_queue is not None:
|
|
rank_zero_warn('cleaning up ddp environment...')
|
|
# todo, pass complete checkpoint as state dictionary
|
|
mp_queue.put(best_model_path)
|
|
mp_queue.put(results)
|
|
|
|
# save the last weights
|
|
last_path = None
|
|
if not self.trainer.testing and best_model_path is not None and len(best_model_path) > 0:
|
|
last_path = re.sub('.ckpt', '.tmp_end.ckpt', best_model_path)
|
|
atomic_save(model.state_dict(), last_path)
|
|
mp_queue.put(last_path)
|
|
|
|
def configure_ddp(
|
|
self, model: LightningModule, device_ids: List[int]
|
|
) -> DistributedDataParallel:
|
|
model = self.ddp_plugin.configure_ddp(model, device_ids)
|
|
return model
|
|
|
|
def configure_sync_batchnorm(self, model: LightningModule) -> LightningModule:
|
|
"""
|
|
Add global batchnorm for a model spread across multiple GPUs and nodes.
|
|
|
|
Override to synchronize batchnorm between specific process groups instead
|
|
of the whole world or use a different sync_bn like `apex`'s version.
|
|
|
|
Args:
|
|
model: pointer to current :class:`LightningModule`.
|
|
|
|
Return:
|
|
LightningModule with batchnorm layers synchronized between process groups
|
|
"""
|
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model, process_group=None)
|
|
|
|
return model
|