lightning/pytorch_lightning/trainer/supporters.py

166 lines
5.6 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Optional
import torch
from torch import Tensor
class TensorRunningAccum(object):
"""Tracks a running accumulation values (min, max, mean) without graph
references.
Examples:
>>> accum = TensorRunningAccum(5)
>>> accum.last(), accum.mean()
(None, None)
>>> accum.append(torch.tensor(1.5))
>>> accum.last(), accum.mean()
(tensor(1.5000), tensor(1.5000))
>>> accum.append(torch.tensor(2.5))
>>> accum.last(), accum.mean()
(tensor(2.5000), tensor(2.))
>>> accum.reset()
>>> _= [accum.append(torch.tensor(i)) for i in range(13)]
>>> accum.last(), accum.mean(), accum.min(), accum.max()
(tensor(12.), tensor(10.), tensor(8.), tensor(12.))
"""
def __init__(self, window_length: int):
self.window_length = window_length
self.memory = torch.Tensor(self.window_length)
self.current_idx: int = 0
self.last_idx: Optional[int] = None
self.rotated: bool = False
def reset(self) -> None:
"""Empty the accumulator."""
self = TensorRunningAccum(self.window_length)
def last(self):
"""Get the last added element."""
if self.last_idx is not None:
return self.memory[self.last_idx]
def append(self, x):
"""Add an element to the accumulator."""
# ensure same device and type
if self.memory.device != x.device or self.memory.type() != x.type():
x = x.to(self.memory)
# store without grads
with torch.no_grad():
self.memory[self.current_idx] = x
self.last_idx = self.current_idx
# increase index
self.current_idx += 1
# reset index when hit limit of tensor
self.current_idx = self.current_idx % self.window_length
if self.current_idx == 0:
self.rotated = True
def mean(self):
"""Get mean value from stored elements."""
return self._agg_memory('mean')
def max(self):
"""Get maximal value from stored elements."""
return self._agg_memory('max')
def min(self):
"""Get minimal value from stored elements."""
return self._agg_memory('min')
def _agg_memory(self, how: str):
if self.last_idx is not None:
if self.rotated:
return getattr(self.memory, how)()
else:
return getattr(self.memory[:self.current_idx], how)()
class Accumulator(object):
def __init__(self):
self.num_values = 0
self.total = 0
def accumulate(self, x):
with torch.no_grad():
self.total += x
self.num_values += 1
def mean(self):
return self.total / self.num_values
class PredictionCollection(object):
def __init__(self, global_rank: int, world_size: int):
self.global_rank = global_rank
self.world_size = world_size
self.predictions = {}
self.num_predictions = 0
def _add_prediction(self, name, values, filename):
if filename not in self.predictions:
self.predictions[filename] = {name: values}
elif name not in self.predictions[filename]:
self.predictions[filename][name] = values
elif isinstance(values, Tensor):
self.predictions[filename][name] = torch.cat((self.predictions[filename][name], values))
elif isinstance(values, list):
self.predictions[filename][name].extend(values)
def add(self, predictions):
if predictions is None:
return
for filename, pred_dict in predictions.items():
for feature_name, values in pred_dict.items():
self._add_prediction(feature_name, values, filename)
def to_disk(self):
"""Write predictions to file(s).
"""
for filename, predictions in self.predictions.items():
# Absolute path to defined prediction file. rank added to name if in multi-gpu environment
outfile = Path(filename).absolute()
outfile = outfile.with_name(
f"{outfile.stem}{f'_rank_{self.global_rank}' if self.world_size > 1 else ''}{outfile.suffix}"
)
outfile.parent.mkdir(exist_ok=True, parents=True)
# Convert any tensor values to list
predictions = {k: v if not isinstance(v, Tensor) else v.tolist() for k, v in predictions.items()}
# Check if all features for this file add up to same length
feature_lens = {k: len(v) for k, v in predictions.items()}
if len(set(feature_lens.values())) != 1:
raise ValueError('Mismatching feature column lengths found in stored EvalResult predictions.')
# Switch predictions so each entry has its own dict
outputs = []
for values in zip(*predictions.values()):
output_element = {k: v for k, v in zip(predictions.keys(), values)}
outputs.append(output_element)
# Write predictions for current file to disk
torch.save(outputs, outfile)